2. Виды информации. Представление информации.
Виды информации. Представление информации. По способу восприятия информации человеком можно выделить визуальную (зрительную), аудиальную (звуковую), обонятельную (запахи) вкусовую, тактильную (осязательную), вестибулярную и мышечную информацию (рис.3). Рис. 3.Виды информации по способу восприятия Визуальную информацию люди воспринимают с помощью глаз. Человек может увидеть объект или явление, букву или цифру, картину или фильм, схему или карту, жест или танец. Аудиальную информацию люди воспринимают с помощью ушей. Человек может услышать произвольные звуки, шум, музыку, пение и речь. Обонятельную информацию, или запахи, человек воспринимает с помощью носа. Запах можно охарактеризовать как терпкий или пряный, приятный или неприятный, тяжелый или легкий. Вкусовую информацию человек воспринимает с помощью языка. Воспринимать информацию могут не только люди, но и животные, и растения. Однако в отличие от людей, восприятие информации животными и растениями имеет свои особенности. Например, слоны способны воспринимать звуки, которые не слышит человек, у собак лучше всего развито обоняние, у летучих мышей – слух, а растения могут получать информацию с помощью корней и листьев. Несмотря на эти особенности, в живой природе, так же как и в мире людей, информация играет важную роль в обеспечении жизненных процессов. Воспринимаемую с помощью органов чувств информацию человек стремится выразить так, чтобы она была понятна другим. Одну и ту же информацию, в зависимости от цели деятельности, можно выразить разными способами и представить в разной форме.По форме представления принято выделять числовую, текстовую, графическую, звуковую и комбинированную информацию (рис. 4).
Рис. 4. Виды информации по форме представления Например, если человек хочет выучить слова песни наизусть, то, скорее всего, он запишет стихи с помощью букв. В этом случае информация будет представлена в Для того чтобы выяснить количество поклонников исполнителя песни, необходимо их подсчитать и результат представить в числовой форме. Каждая из этих форм представления информации имеет свои особенности. Графическая информация наиболее доступна, так как срезу передает визуальный образ. С помощью текстовой и звуковой информации можно представить исчерпывающие разъяснения. Числовая информация дает возможность проводить различные сравнения и вычисления. Поэтому чаще всего информацию представляют в комбинированной форме. Частным случаем комбинированной информации является мультимедийная информация, когда текстовая и числовая информация сочетается со звуковой и графической информацией, с видеоизображением. Для представления информации человек использует различные знаки. Один и тот же знак может иметь разный смысл. Если человек наделил знак смыслом, то этот знак называют символом Например, нарисованный овал может означать или букву «О», или цифру ноль, или химический элемент кислород, или геометрическую фигуру. В нашем примере нарисованный овал – это знак. Буква, цифра и обозначение химического элемента являются символами. Для того чтобы понимать смысл информации, представленной с помощью символов, человеку необходимо знать не только символы, но и правила составления сообщений из этих символов. Говоря другими словами, человеку необходимо знать Выделяют естественные (разговорные) и искусственные языки (рис. 5). Естественные языки исторически сложились в процессе развития человеческой цивилизации. К естественным языкам относятся русский, английский, китайский и многие другие языки. В мире насчитывается более 10 тыс. разных языков, диалектов и наречий. Рис. 5. Виды языков Искусственные языки специально созданы для профессионального применения в какой-либо области человеческой деятельности. Некоторые искусственные языки складывались в течение длительного исторического периода, например язык математических обозначений. С этой точки зрения они мало отличаются от естественных языков. Примерами искусственных языков являются эсперанто, языки программирования, язык математики, язык химии, язык логики, язык флажков на флоте, язык дорожных знаков. Некоторые естественные языки имеют искусственно созданные алфавиты. Так, например, авторами русского языка являются Кирилл и Мефодий. Представление информации с помощью определенного языка всегда связано с алфавитом. Алфавит содержит конечный набор символов, из которых можно составить как угодно много слов. Все символы в алфавите упорядочены. Количество символов в алфавите называют мощность алфавита. Например, текст может быть представлен с помощью букв русского или английского алфавита, а число – с помощью алфавита десятичных цифр. В каждом из этих алфавитов буквы и цифры расположены в определенном порядке. Представленную информацию можно преобразовать из одной последовательности знаков в другую, не задумываясь о смысле сообщения. Такой процесс преобразования сообщения называется кодированием. Обратный процессом кодированию является процесс декодирования. Для того чтобы выполнить кодирование или декодирование, необходимо знать правила перевода одних знаков в другие знаки. Говоря другими словами, надо знать код или шифр. По мере развития средств появились различные способы кодирования информации. Например, кодирование с помощью азбуки (кода) Морзе (длительный сигнал – тире, короткий сигнал – точка, нет сигнала – пауза), с помощью двоичного кода (нет сигнала – 0, есть сигнал – 1). Кодирование используется для представления информации в такой форме, которая будет наиболее удобна для работы человека или технического устройства. Например, человеку удобно и привычно работать с десятичными числами, а компьютер настроен на работу с двоичными числами. Поэтому десятичное число, введенное с помощью клавиатуры компьютера, кодируется в двоичное число. При выводе числа на экран монитора происходит декодирование из двоичного числа в десятичное число. Кодирование информации необходимо не только для ее рационального представления, но и для ее эффективной защиты. Не случайно другим примером кода является пин-код сотового телефона или банковской карточки, а также код, используемый в качестве ключа от цифрового замка дорожной сумки.ТЕСТ КРОССВОРД ПО ТЕМЕ Презентация |
ВОСПРИЯТИЕ ЗАПАХОВ | Наука и жизнь
В последнее десятилетие ХХ века в науке о запахах произошла подлинная революция. Решающую роль сыграло открытие 1000 видов обонятельных рецепторов, связывающих молекулы пахучих веществ. Однако механизм передачи обонятельного сигнала в центральную нервную систему таит в себе еще много загадок.
Наука и жизнь // Иллюстрации
Пути передачи информации о запахах в головной мозг.
Схематическое изображение обонятельного эпителия. Базальные клетки являются клетками-предшественниками обонятельных рецепторных нейронов.
Изображение реснички обонятельного нейрона, сделанное с помощью флуоресцентного красителя. На мембране ресничек расположены рецепторные белки, взаимодействующие с молекулами одорантов.
Модель молекулы обонятельного рецепторного белка мыши, к которому присоединена молекула одоранта — гексанола (пурпурного цвета).
Одна из моделей процесса преобразования сигнала внутри реснички обонятельного нейрона.
Схематическое изображение комбинаторных рецепторных кодов одорантов.
Электроольфактограмма (ЭОГ) — электрический колебательный сигнал, регистрируемый специальным электродом с участка внешней поверхности обонятельного эпителия крысы.
‹
›
Открыть в полном размере
Чуть более четверти века назад в журнале «Наука и жизнь» (№ 1, 1978 г. ) была опубликована статья «Загадка запаха». Ее автор, кандидат химических наук Г. Шульпин, справедливо отмечал, что современное ему состояние науки о запахах примерно такое же, как состояние органической химии в 1835 году. Тогда один из зачинателей этой науки, Ф. Велер, писал, что органическая химия представляется ему дремучим лесом, из которого невозможно выбраться. Но уже через четверть века А. М. Бутлеров, создав теорию химического строения вещества, сумел «выбраться из чащи». Шульпин выражал уверенность, что загадка запаха будет решена едва ли не быстрее, чем в случае органической химии.
И он оказался прав на все 100%! В последнее время произошел настоящий прорыв в понимании молекулярных основ обоняния. Разберем основные стадии восприятия запахов в свете современных представлений.
КАК ВОСПРИНИМАЕТСЯ ЗАПАХ
Проделаем простой опыт. Возьмем флакон с пахучей жидкостью, например духами, откроем пробку и понюхаем содержимое в спокойном ритме дыхания. Легко обнаружить, что мы ощущаем запах только во время вдоха; начинается выдох — запах исчезает.
При вдохе через нос воздух вместе с молекулами пахучего вещества (называемого обонятельным стимулом или одорантом) проходит в каждой из двух носовых полостей по щелевидному каналу сложной конфигурации, который образован продольной носовой перегородкой и тремя носовыми раковинами. Здесь воздух очищается от пыли, увлажняется и нагревается. Затем часть воздуха поступает в расположенную в верхней задней зоне канала обонятельную область, имеющую вид щели, покрытой обонятельным эпителием.
Общая поверхность, занимаемая эпителием в обеих половинках носа взрослого человека, невелика — 2 — 4 см2 (у кролика эта величина равна 7-10 см2, у собак — 27 — 200 см2). Эпителий покрыт слоем обонятельной слизи и содержит три типа первичных клеток: обонятельные рецепторы, опорные и базальные клетки. Влекомые воздухом пахучие молекулы проникают в носовую полость и переносятся над поверхностью эпителия. При нормальном спокойном дыхании вблизи обонятельного эпителия проходит 7 -10% вдыхаемого воздуха. Обонятельный эпителий имеет толщину приблизительно 150-300 мкм. Он покрыт слоем слизи (10-50 мкм), который молекулам одоранта предстоит преодолеть, прежде чем они провзаимодействуют со специальными сенсорными нейронами — обонятельными рецепторами.
Основная функция обонятельного рецептора состоит в выделении, кодировании и передаче информации об интенсивности, качестве и продолжительности запаха в обонятельную луковицу и специальным центрам в головном мозге. Эпителий в обеих носовых полостях у человека содержит приблизительно 10 млн обонятельных нейронов ( у кролика — около 100 млн, а у немецкой овчарки — до 225 млн).
Как известно, нейрон состоит из тела и отростков: аксонов и дендритов. Нервный импульс с одной нервной клетки на другую передается с аксона на дендрит. Диаметр утолщенной центральной части обонятельного нейрона (сомы) 5-10 мкм. Дендритная часть в виде волокнистых отростков диаметром 1-2 мкм выходит к внешней поверхности эпителия. Здесь дендриты заканчиваются утолщением, от которого отходит пучок из 6-12 ресничек (цилий) диаметром 0,2-0,3 мкм и длиной до 200 мкм, погруженный внутрь слоя слизи (у кролика число ресничек в одном рецепторном нейроне составляет 30-60, а у собак достигает 100-150). Отходящее от сомы нервное волокно (аксон) имеет диаметр около 0,2 мкм и выходит к внутренней поверхности эпителия. Здесь аксоны от соседних нейронов объединяются в жгуты (филы), доходящие до обонятельной луковицы.
СЕМИОТИКА ОБОНЯНИЯ
Для того чтобы обонятельный сигнал был воспринят нейроном, молекула одоранта связывается со специальной белковой структурой, расположен ной в нейрональной клеточной мембране. Такая структура называется рецепторным белком. Используя методы молекулярной биологии, американские ученые Линда Бак и Ричард Аксель в 1991 году установили, что обонятельные нейроны у млекопитающих содержат около 1000 различных видов рецепторных белков (у человека их меньше — около 350). Признанием важности этого открытия стало присуждение им в 2004 году Нобелевской премии за исследования в области физиологии и медицины (см. «Наука и жизнь» № 12, 2004 г).
Каким образом рецепторы распределяются по нейронам: имеются ли отдельные представители этого семейства во всех обонятельных нейронах или каждый нейрон несет на своей мембране только один вид рецепторного белка? Как может мозг определить, какой из 1000 типов рецепторов подал сигнал? Имеющиеся данные позволяют сделать заключение о том, что на одном нейроне присутствует только обонятельный рецепторный белок одного вида. Нейроны с разными рецепторами обладают различной функциональностью, то есть в эпителии имеются тысячи различных типов нейронов. В этом случае проблема идентификации активированного запахом отдельного рецептора сводится к задаче выявления подавшего сигнал нейрона.
Принимая во внимание, что общее число обонятельных нейронов у человека около 10 млн, число обонятельных рецепторов одного типа исчисляется в среднем десятками тысяч.
Обонятельная система использует комбинаторную схему для идентификации одорантов и кодирования сигнала. Согласно ей один тип обонятельных рецепторов активируется множеством одорантов и один одорант активирует множество типов рецепторов. Различные одоранты кодируются различными комбинациями обонятельных рецепторов, причем увеличение концентрации стимула приводит к возрастанию числа активируемых рецепторов и к усложнению его рецепторного кода. В этой схеме каждый рецептор выступает в качестве одного из компонентов комбинаторного рецепторного кода для многих одорантов и как бы выполняет роль буквы своеобразного алфавита, из совокупности которых составляются соответствующие слова-запахи.
Минимальные структурные отличия молекул одорантов, например, по функциональной группе, по длине углеродной цепи, по пространственной структуре приводят к различному рецепторному коду. Для отличительного признака молекулы одоранта, способного изменить кодировку запаха, был предложен термин «одотоп» (odotope), или детерминант запаха. Различные обонятельные рецепторы, которые распознают один и тот же одорант, могут идентифицировать различные его признаки-одотопы. Одиночный обонятельный рецептор способен «различать» молекулы, отличающиеся длиной углеродной цепочки всего лишь на один атом углерода, или молекулы, имеющие одинаковую длину углеродной цепочки, но отличающиеся функциональной группой. Учитывая, что в эпителии млекопитающих имеется приблизительно 1000 видов обонятельных рецепторов, можно полагать, что такая комбинаторная схема позволяет различить громадное число одорантов (даже человек различает до 10 000 запахов).
Полученные в последнее время результаты экспериментальных исследований свойств обонятельных рецепторных белков позволили создать на молекулярном уровне структурную модель спиральной молекулы обонятельного белка. Обонятельные рецепторные белки принадлежат к суперсемейству мембранносвязанных рецепторов. Они пересекают двухслойную липидную мембрану реснички семь раз. У содержащей 300-350 аминокислот молекулы рецепторного белка три наружные петли соединяются с тремя внутриклеточными петлями семью пересекающими мембрану трансмембранными участками.
НЕОБХОДИМАЯ СЛИЗЬ
Находящиеся в потоке воздуха молекулы одоранта, перед тем как достичь обонятельных рецепторных нейронов, должны пересечь обволакива ющий поверхность обонятельного эпителия слой слизи. Физиологические функции слоя слизи полностью до сих пор не выяснены. Не вызывает сомнения, что она создает гидрофильную оболочку для чувствительных и хрупких обонятельных рецепторов, выполняя защитную функцию. Ведь систему восприятия сигнала нужно защитить от воздействия внешней среды, то есть от молекул одорантов, среди которых могут быть достаточно опасные и химически активные вещества.
Слой слизи состоит из двух подслоев. Внешний, водный, имеет толщину примерно 5 мкм, а внутренний, более вязкий, — около 30 мкм. Реснички-цилии направлены наклонно к внешней поверхности слоя слизи. Они образуют своего рода сетку с нерегулярными ячейками, причем эта сетка размещена у поверхности раздела подслоев так, что основная часть поверхности ресничек (около 85%) оказывается расположен ной вблизи границы раздела.
Слой слизи содержит разнообразные растворимые в воде белки, значительную часть которых составляют так называемые гликопротеины. Благодаря разветвленной молекулярной структуре эти белки способны связывать и удерживать молекулы воды, образуя гель.
Другие виды белков, содержащихся в слизи, взаимодействуют с молекулами одорантов и тем самым могут оказывать влияние на восприятие и распознавание запахов. Эти белки подразделяются на два основных класса — одорант-связующие белки (OBP) и одорант-разрушающие ферменты.
ОВР относятся к семейству белков, имеющих складчатую бочкообразную структуру с внутренней глубокой полостью, в которую попадают маленькие молекулы гидрофильных (жирорастворимых) одорантов. Разные подвиды этих белков отличаются высокой избирательностью взаимодействия с одорантами различных химических классов.
Полагают, что OBP способствуют растворению одоранта и транспортируют его молекулы сквозь слой слизи, действуют как фильтр для разделения одорантов, могут облегчать связывание одоранта с рецепторным белком и даже очищать околорецепторное пространство от ненужных компонентов.
Кроме одорант-связующих белков в слизи обонятельного эпителия вблизи рецепторных нейронов обнаружены несколько видов одорант-разрушающих ферментов. Все эти ферменты запускают реакции превращения молекул одорантов в другие соединения. Образующиеся в результате этих реакций продукты также вносят свой вклад в восприятие запаха. В конечном итоге все поступающие в слой слизи молекулы одорантов быстро, практически одновременно с завершением вдоха, теряют свою «запаховую» активность. Так что обонятельная система при каждом вдохе получает новую информацию от свежих порций одоранта.
ОБОНЯНИЕ НА УРОВНЕ МОЛЕКУЛ
Многие свойства системы восприятия запахов можно объяснить на молекулярном уровне. Молекула одоранта встречает на поверхности слизи, покрывающей обонятельный эпителий, молекулу одорант-связующего белка, которая связывает и переносит молекулу одоранта через слой слизи к поверхности реснички обонятельного нейрона. В ресничках осуществляется основной процесс передачи обонятельного сигнала. Его механизм достаточно типичен для многих видов взаимодействий физиологически активных веществ с рецепторами нервных клеток.
Молекула одоранта прикрепляется к определенному обонятельному рецептору (R). Между процессом связывания молекулы одоранта с рецептором и передачей обонятельного сигнала в нервную систему лежит сложный каскад биохимических реакций, проходящих в нейроне. Связывание молекулы одоранта с рецепторным белком активирует так называемый G-белок, расположенный на внутренней стороне клеточной мембраны. G-белок в свою очередь активирует аденилатциклазу (AC) — фермент, преобразующий внутриклеточный аденозинтрифосфат (ATP) в циклический аденозинмонофосфат (cAMP). А уже cAMP активирует другой мембранносвязанный белок, который называется ионным каналом, поскольку открывает и закрывает вход заряженным частицам внутрь клетки. Когда ионный канал открыт, в клетку проникают катионы металлов. Таким способом меняется электрический потенциал клеточной мембраны и генерируется электрический импульс, передающий сигнал с одного нейрона на другой.
Несколько молекулярных стадий передачи внутриклеточного сигнала обеспечивают его усиление, в результате чего небольшого числа молекул одоранта становится достаточно для генерирования нейроном электрического импульса. Такие усилительные каскады обеспечивают большую чувствительность системы восприятия запахов.
Итак, активация рецепторного белка молекулой одоранта в конечном счете приводит к генерированию электрического тока в обонятельном рецепторном нейроне. Ток распространяется по дендриту нейрона в его соматическую часть, где возбуждает выходной электрический импульс. Этот импульс передается по нейрональному аксону в обонятельную луковицу.
Одиночный электрический сигнал-импульс на выходе имеет длительность не более 5 мс и пиковую амплитуду около 100 мкВ. Почти все нейроны генерируют импульсы и при отсутствии воздействия одоранта, то есть обладают спонтанной активностью, называемой биологическим шумом. Частота этих импульсов меняется в диапазоне от 0,07 до 1,8 импульса в секунду.
ЛУКОВИЧНАЯ НЕЙРОСЕТЬ
Обонятельные рецепторные нейроны распознают громадное число разнообразных молекул пахучих веществ и посылают информацию о них через аксоны в обонятельную луковицу, служащую первым центром обработки обонятельной информации в головном мозге. Парные обонятельные луковицы представляют собой продолговатые образования «на ножках». Отсюда начинается путь обонятельного сигнала к полушариям мозга. Аксоны обонятельных нейронов оканчиваются в обонятельной луковице разветвлениями в сферических концентраторах (диаметром 100-200 мкм), называемых гломерулами. В гломерулах осуществляется контакт между окончаниями аксонов обонятельных нейронов и дендритами нейронов второго порядка, которыми являются митральные и пучковые клетки.
Митральные клетки — самые крупные нервные клетки, выходящие из обонятельной луковицы. Пучковые клетки меньше митральных, но функционально с ними схожи. Представление о количестве нервных клеток у млекопитающих могут дать характеристики обонятельной системы кролика. В ней имеется по 50 миллионов обонятельных рецепторных нейронов справа и слева (ровно в десять раз больше, чем у человека). Аксоны обонятельных рецепторов распределены между 1900 гломерулами обонятельной луковицы — примерно по 26 000 аксонов на гломерулу. Дендритные окончания 45 000 митральных и 130 000 пучковых клеток получают сигналы от аксонов в гломерулах и передают их из обонятельной луковицы в центры обоняния в головном мозге. Около 24 митральных и 70 пучковых клеток получают информацию от аксонов в каждой гломеруле. У человека около 10 млн аксонов обонятельных нейронов распределяются по 2000 гломерул обонятельной луковицы.
Все аксоны одной популяции обонятельных нейронов сходятся на две гломерулы, зеркально расположенные по разные стороны двумерного поверхностного слоя обонятельной луковицы. В зависимости от содержания передаваемого сигнала гломерулы активируются различным образом. Совокупность активированных гломерул называется картой запаха и представляет своего рода «слепок» запаха, то есть она показывает, из каких пахучих веществ состоит воспринимаемый обонятельный объект.
Механизм активации гломерул до сих пор не выяснен. Усилия исследователей направлены на то, чтобы выяснить, каким образом многообразие одорантов воспроизводится в двумерном слое гломерул на поверхности обонятельной луковицы. Кстати, эти отображения имеют динамический характер — они постоянно меняются в ходе восприятия запаха, усложняя научную задачу.
Обонятельная луковица — это большая многослойная нейросеть для пространственно-временнoй обработки отображения запаха в гломерулах. Ее можно рассматривать как совокупность множества микросхем с большим количеством связей, со взаимной активацией и ингибированием активности нейронов. Выполняемые нейронами операции выделяют характерные свойства карты запаха.
От обонятельной луковицы аксоны митральных и пучковых клеток передают информацию в первичные обонятельные участки коры головного мозга, а затем в высшие ее участки, где формируется осознанное ощущение запаха, и в лимбическую систему, которая порождает эмоциональную и мотивационную реакцию на обонятельный сигнал.
Свойства обонятельных зон коры головного мозга позволяют формировать ассоциативную память, которая устанавливает связь нового аромата с отпечатками воспринятых ранее обонятельных стимулов. Полагают, что процесс идентификации одоранта включает сравнение получающегося отображения с его описанием в семантической памяти. В случае совпадения отпечатка и памяти о запахе происходит какой-либо ответ (эмоциональный, двигательный) организма. Процесс этот осуществляется очень быстро, в течение секунды, и информация о совпадении после ответа сразу сбрасывается, поскольку мозг готовит себя к решению следующей задачи восприятия запаха.
ЗАГАДКИ ЗАПАХОВ
То, о чем говорилось в предыдущих разделах, относится пусть к самому сложному, основополагающему, но начальному разделу науки о запахах — к их восприятию. Не раскрыт механизм взаимодействия обоняния с другими системами восприятия, например со вкусом (см. «Наука и жизнь» № 8, 2003 г., с. 16-20). Ведь известно, что если человеку зажать ноздри, то при дегустации даже хорошо известных вкусовых пищевых продуктов (например — кофе) он не в состоянии точно определить, что он пробовал. Достаточно разжать ноздри — и вкусовые ощущения восстанавливаются.
С молекулярной точки зрения пока непонятно, в каких единицах измерять интенсивность запаха и от чего она зависит, что такое качество запаха, его «букет», чем отличается один запах от другого и как охарактеризовать это отличие, что происходит с запахом при смешивании различных одорантов. Оказывается, что независимо от вида одорантов и уровня подготовленности даже опытный эксперт не может определить все составляющие смесь компоненты, если их больше трех. Если же смесь содержит более десяти одорантов, то человек не в состоянии идентифицировать ни одного из них.
Остается еще множество вопросов, касающихся механизмов и видов воздействия запахов на эмоциональное, психическое и физическое состояния человека. В последнее время на эту тему появилось немало спекуляций, чему поспособствовал вышедший в 1985 году роман П. Зюскинда «Парфюмер», более восьми лет прочно занимавший место в первой десятке бестселлеров на западном книжном рынке. Фантазии на тему чрезвычайной силы подсознательного воздействия ароматов на эмоциональное состояние человека обеспечили этому произведению огромный успех.
Однако художественный вымысел постепенно получает обоснование. Недавно в периодической печати появились сообщения о том, что американские военные «парфюмеры» разработали на редкость дурно пахнущую бомбу, способную не только вызвать отвращение, но и разогнать солдат противника или агрессивно настроенную толпу.
Общественные аллюзии на парфюмерные темы подстегнули всеобщий интерес к искусству ароматерапии. Расширилось использование ароматов в общественных местах, таких, как офисы, торговые залы, холлы гостиниц. Появились даже специальным образом ароматизированные товары, улучшающие настроение. Возникла такая отрасль рыночной экономики, как аромамаркетинг — «наука» о привлечении клиентов с помощью приятных запахов. Так, запах кожи навевает покупателю мысли о дорогом качественном товаре, аромат кофе побуждает к покупкам для домашнего ужина и т.д. Каким образом запахи формируют в головном мозге сигналы, побуждающие человека совершать покупки? Ученым предстоит совершить еще немало открытий, прежде чем ответить на этот и многие другие вопросы и отделить мифы о запахах от реальности.
Литература
Лозовская Е., канд. физ.-мат. наук. Штрих-код запаха // Наука и жизнь, 2004, № 12.
Майоров В. А. Запахи: их восприятие, воздействие, устранение. — М.: Мир, 2006.
Марголина А., канд. биол. наук. Сладкая власть феромонов // Наука и жизнь, 2005, № 7.
Шульпин Г., канд. хим. наук. Загадка запаха // Наука и жизнь, 1978, № 1.
Знай свой мозг: обонятельная луковица
Где находится обонятельная луковица?
Обонятельная луковица представляет собой структуру, расположенную на нижней (нижней) стороне полушарий головного мозга, расположенную вблизи передней части головного мозга. В этом месте в обоих полушариях головного мозга находится обонятельная луковица. Обонятельная луковица прикреплена к полушарию головного мозга длинной ножкой, которую часто называют либо обонятельной ножкой, либо обонятельной ножкой.
Что такое обонятельная луковица и для чего она нужна?
Обонятельная луковица является важной структурой обонятельной системы (системы, отвечающей за обоняние). Обоняние начинается, когда молекулы одоранта попадают в носовую полость при вдохе или поднимаются изо рта (например, во время пережевывания пищи). Эти молекулы взаимодействуют с обонятельными рецепторами, которые являются частью семейства рецепторов, связанных с G-белком. Стимуляция этих рецепторов вызывает выработку вторичных мессенджеров, таких как циклический АМФ (цАМФ), что приводит к открытию ионных каналов и генерации потенциалов действия в обонятельных рецепторных клетках.
Аксоны этих клеток обонятельных рецепторов оканчиваются в обонятельной луковице, где они сходятся на дендритах нейронов обонятельной луковицы в небольшие скопления, называемые клубочками (множественное число от glomerulus, термин, иногда используемый в анатомии для обозначения небольшого скопления структуры). Каждый клубочек состоит из аксонов нескольких тысяч нейронов обонятельных рецепторов, сходящихся на дендритах небольшого набора (от 40 до 50) нейронов обонятельных луковиц, и каждый клубочек получает вход только от одного типа обонятельных рецепторов. Это не означает, что каждый клубочек способен обнаруживать только один запах, поскольку каждый тип обонятельных рецепторов способен обнаруживать несколько запахов. Однако обонятельная луковица устроена таким образом, что одинаковые одоранты часто стимулируют клубочки, расположенные близко друг к другу в обонятельной луковице. Это создает организацию в обонятельной луковице, которая, по-видимому, связана со структурой запаха.
Посмотрите это 2-минутное видео о нейробиологии, чтобы узнать больше об обонянии.
В обонятельной луковице имеется несколько типов нейронов. К ним относятся митральные клетки, пучковые релейные нейроны, гранулярные клетки и перигломерулярные нейроны. Митральные клетки и пучковые релейные нейроны образуют связи с нейронами обонятельных рецепторов в клубочках. Они получают обонятельную информацию и затем переносят ее от обонятельной луковицы к обонятельной коре, основному месту обработки обонятельной информации. Обонятельная кора состоит из нескольких областей коры, которые получают информацию от обонятельной луковицы, включая грушевидную кору, энторинальную кору, область коры, покрывающую миндалевидное тело, известную как периамигдалоидная кора, и две области, известные как обонятельный бугорок и переднее обонятельное ядро. соответственно. Клетки-зерна и перигломерулярные нейроны являются промежуточными нейронами, которые, как считается, участвуют в точной настройке обработки обонятельной информации, например, помогая усилить контраст между различными запахами.
Обонятельная луковица, как правило, намного меньше у людей и других приматов, чем у животных, которые в большей степени полагаются на обоняние, чтобы получить информацию об окружающей среде (например, грызуны, собаки и т. д.). Однако утверждения о том, что человеческое обоняние «недоразвито» из-за отсутствия важности, могут быть преувеличены. Исследования показывают, что люди могут обнаруживать до триллиона различных запахов и что мы способны использовать обоняние гораздо шире, когда нас просят выполнить задачу, которая в значительной степени зависит от обоняния. Кроме того, те, кто намеренно регулярно проверяет свою обонятельную систему (например, дегустаторы вин), могут продемонстрировать чрезвычайно тонкое обонятельное восприятие. Было даже обнаружено, что люди могут использовать тот же тип отслеживания запахов, что и животные, такие как ищейки. Таким образом, может случиться так, что у нас есть способность к более глубокому обонятельному различению, но не насущная потребность в совершенствовании этих навыков, за исключением определенных обстоятельств.
Обонятельная луковица также представляет интерес, поскольку это одно из немногих мест в мозге, где в течение жизни появляются новые нейроны. Однако это явление в основном наблюдалось у грызунов, и есть некоторые споры о его распространенности и / или важности для людей. У грызунов новые нейроны, которые добавляются к обонятельной луковице, в основном образуются в области, известной как вентрикулярная зона, которая выстилает стенки боковых желудочков. Затем новые нейроны мигрируют в обонятельную луковицу, где они дифференцируются в определенные функциональные типы клеток. По оценкам, в мозгу грызунов ежедневно образуются тысячи новых нейронов обонятельных луковиц. Причины такого обильного нейрогенеза в обонятельной луковице неясны, хотя было высказано предположение, что он является важным компонентом синаптической пластичности в структуре и может помочь обонятельной луковице адаптироваться к часто меняющемуся составу нейронов обонятельных рецепторов. , продолжительность жизни которых у грызунов составляет всего около 60 дней.
Ссылка (в дополнение к приведенному выше тексту):
Вандера Т.В., Гулд Д.Дж. Нольте «Человеческий мозг». 7-е изд. Филадельфия, Пенсильвания. Эльзевир; 2016.
Обонятельное определение и значение — Merriam-Webster
старая фабрика äl-ˈfak-t(ə-)rēōl-
: обоняние или относящееся к обонянию
обонятельные рецепторы
обонятельные ощущения
обонятельно
äl-ˈfak-t(ə-)rə-lē
ōl-
наречие
Знаете ли вы?
Обонятельный происходит от причастия прошедшего времени латинского olfacere («пахнуть»), которое образовано от глагола olēre («издавать запах») и facere («делать» ). Обонятельный — это слово, которое часто появляется в научном контексте (например, в «обонятельных нервах», нервах, которые проходят от носа к мозгу и содержат рецепторы, которые делают возможным обоняние), но иногда оно разветвляется в менее специализированных контекстах. . Приятный запах весенних цветов, например, можно считать «обонятельным наслаждением». Родственное слово, обоняние — существительное, относящееся к обонянию или акту или процессу обоняния.
Примеры предложений
Недавние примеры в Интернете Color Factory Color Factory, интерактивный художественный музей, расположенный в Аппер-Кирби, сотрудничает с художниками (включая обонятельных художников ), иллюстраторами, дизайнерами, производителями, местными продавцами продуктов питания и некоммерческими организациями. — Робин Сослоу, 9 лет.0047 Хрон , 20 февраля 2023 г. Теория: Поскольку наша обонятельная система имеет прямую связь с нашим мозгом, эти незаметные запахи могут вызвать чувство спокойствия, которое многие связывают с пребыванием рядом с водой. — Брайан Андервуд, Женское здоровье , 15 февраля 2023 г. Другой вопрос, который нельзя игнорировать, заключается в том, может ли дефицит обонятельного восприятия быть причиной поведенческого дистресса или расстройства. — Ян Форстер, 9 лет0047 Журнал Discover , 1 октября 2014 г. Эта изощренная стратегия обонятельных манипуляций распространяется на всех членов семейства грибов. — Федерико Куксо, Discover Magazine , 9 ноября 2022 г. Ученые проанализировали образцы обонятельных эпителиальных тканей, в которых живут обонятельные клетки, из 24 биопсий, девять из которых были взяты у постковидных пациентов, борющихся с стойкой потерей обоняния. — Арканзас Онлайн , 25 декабря 2022 г. Эта изощренная стратегия обонятельных манипуляций распространяется на всех членов семейства грибов. — Федерико Куксо, Discover Magazine , 9 ноября 2022 г. Но фирменный запах марихуаны — когда-то использовавшийся полицией для обыска домов, автомобилей и людей — теперь становится все более распространенным обонятельным 9.Опыт 0048 в городах, где курение наиболее распространено. — Мерил Корнфилд, Washington Post , 14 января 2023 г. В исследовании оценивали биопсию ткани из обонятельных слизистых оболочек 24 человек, в том числе девяти, которые потеряли обоняние в течение как минимум четырех месяцев. — Эван Буш, NBC News , 21 декабря 2022 г. Узнать больше
Эти примеры предложений автоматически выбираются из различных онлайн-источников новостей, чтобы отразить текущее использование слова «обонятельный». Мнения, выраженные в примерах, не отражают точку зрения Merriam-Webster или ее редакторов. Отправьте нам отзыв.
История слов
Этимология
Латинское olfactorius , от olfacere до обоняния, от olēre нюхать + facere делать — больше на запах, делать
Первое известное использование
около 1658, в значении, определенном выше
Путешественник во времени
Первое известное использование обонятельного было около 1658 г.
Другие слова того же года
Подкаст
Музыкальная тема Джошуа Стэмпера ©2006 New Jerusalem Music/ASCAP
Получайте «Слово дня» на свой почтовый ящик!
Словарные статьи Около
обонятельныхольфактометр
обонятельный
обонятельная луковица
Посмотреть другие записи поблизости
Процитировать эту запись «Обонятельный».
Словарь Merriam-Webster.com , Merriam-Webster, https://www.merriam-webster.com/dictionary/olfactory. По состоянию на 24 февраля 2023 г. прилагательноестарая фабрика äl-ˈfak-t(ə-)rē
ōl-
: обоняние, относящееся или связанное с обонянием
Медицинское определение
обоняние
прилагательное
старая фабрика äl-ˈfak-t(ə-)rēōl-
: обоняния, относящегося к обонянию или связанного с ним для носителей арабского языка
Последнее обновление: