Суточные биоритмы человека понятие значение для жизни и здоровья: Биоритмы и их роль в жизни человека

Биологические ритмы человека – что это такое, как их использовать, расчет и совместимость.

13 Февраля 2020

27 Июня 2020

4 минуты

24165

ProWellness

Оглавление

  • Основные группы биоритмов
  • Совместимость по биоритмам
  • Как эффективно использовать биоритмы?

Отказ от ответсвенности

Обращаем ваше внимание, что вся информация, размещённая на сайте Prowellness предоставлена исключительно в ознакомительных целях и не является персональной программой, прямой рекомендацией к действию или врачебными советами. Не используйте данные материалы для диагностики, лечения или проведения любых медицинских манипуляций. Перед применением любой методики или употреблением любого продукта проконсультируйтесь с врачом. Данный сайт не является специализированным медицинским порталом и не заменяет профессиональной консультации специалиста. Владелец Сайта не несет никакой ответственности ни перед какой стороной, понесший косвенный или прямой ущерб в результате неправильного использования материалов, размещенных на данном ресурсе.

Биологические ритмы человека – что это такое, как их использовать, расчет и совместимость.

В природе все развивается циклично, если присмотреться, можно заметить определенную закономерность во всем. Приливы и отливы, смена времен года, день и ночь – явления, характеризующие их. За общее состояние организма человека отвечают биоритмы, которые запускаются в момент рождения.

Внимание! Временное приспособление всех систем организма к окружающим факторам, способствующее их жизнедеятельности и слаженной работе, называется биологическими ритмами.

Самочувствие и поведение человека меняется от времени суток, смены времен года. Вся жизнь подчинена суточным, месячным и годовым биоритмам. Человек индивидуален, поэтому каждому присущ свой образ жизни, со своим расписанием работы, питания и отдыха.

При нарушении биоритмов в результате смены климата или часового пояса организм нуждается в адаптации, которая может длиться до трех дней.


Основные группы биоритмов

Условно их делят на ритмы:

  1. Высокой частоты. Продолжительность не превышает получаса. К ним относят частоту дыхания, сокращения сердечной мышцы, биотоки мозга, перистальтику кишечника и скорость биохимических реакций.
  2. Средней частоты. Продолжительность от получаса до недели. Сюда входят бодрствование и сон, работа и отдых, процесс обмена веществ, показатели давления, температуры тела и крови, частота деления клеток.
  3. Низкой частоты. Недельные, сезонные и лунные периоды. Основные биологические процессы – функционирование эндокринной системы и изменение циклов в половой системе.

Выделяют три основных биоритма:

  • физиологический – продолжительность 23 дня;
  • эмоциональный – 28 дней;
  • интеллектуальный – 33 дня.

Все они имеют одну точку отсчета – момент рождения человека.

Совместимость по биоритмам

Биоритмы совместимости можно рассчитать. Большое значение это имеет при подборе сотрудников, личного секретаря, помощника либо семейного доктора. Это простой способ определить, насколько будет высок процент взаимопонимания при совместной работе. Лучший вариант, когда биоритм одного снижается, а другого, напротив, идет на подъем.

Как эффективно использовать биоритмы?

В приведенной системе координат определите, где находятся ваши биоритмы по отношению к нулю. В таблице приведены все возможные сочетания и рекомендации.


 

Физ.

Эмоц.

Интел.

Что можно делать

+

+

+

Ваши возможности на пике. Показан любой род деятельности.

+

+

-

Активный отдых в кругу семьи или с друзьями.

+

-

+

Интеллектуальная работа в одиночестве. Создайте расслабляющую атмосферу и решайте самые сложные задачи.

+

-

-

Рекомендовано занятие спортом. Посетите тренажерный зал или отправляйтесь в парк на пробежку.

-

+

-

Хорошо выспитесь и проведите день в кругу друзей.

-

+

+

Рекомендовано посещение тренингов, провести совещание или отправиться на собеседование.

-

-

+

Займитесь интеллектуальным трудом в одиночестве.

-

-

-

Ваши способности сейчас на нуле. Посмотрите интересный фильм или почитайте книгу.

 

 

При нарушении циклических периодов тяжелый труд может привести к серьезным заболеваниям. Изучив характер своих внутренних часов, можно эффективно использовать их для продуктивной деятельности и отдыха. Прислушивайтесь к своему организму и выстраиваете свою жизнь максимально эффективно и комфортно.


Отказ от ответсвенности

Обращаем ваше внимание, что вся информация, размещённая на сайте Prowellness предоставлена исключительно в ознакомительных целях и не является персональной программой, прямой рекомендацией к действию или врачебными советами. Не используйте данные материалы для диагностики, лечения или проведения любых медицинских манипуляций. Перед применением любой методики или употреблением любого продукта проконсультируйтесь с врачом.

Данный сайт не является специализированным медицинским порталом и не заменяет профессиональной консультации специалиста. Владелец Сайта не несет никакой ответственности ни перед какой стороной, понесший косвенный или прямой ущерб в результате неправильного использования материалов, размещенных на данном ресурсе.

Эксперт: Екатерина Подваленчук Эксперт в области правильного питания и здоровья

Рецензент: Екатерина Воробьева Адепт здорового и активного образа жизни

Читайте другие статьи по схожим темам

биоритмыбиологические ритмынарушение биоритмовгодовые биоритмы

Оцените статью

(8 голосов, в среднем 3)

Поделиться статьей

Биологические ритмы здоровья | Наука и жизнь

Все живые существа на Земле — от растений до высших млекопитающих — подчиняются суточным ритмам. У человека в зависимости от времени суток циклически меняются физиологическое состояние, интеллектуальные возможности и даже настроение. Ученые доказали, что виной тому колебания концентраций гормонов в крови. В последние годы в науке о биоритмах, хронобиологии было сделано многое, чтобы установить механизм возникновения суточных гормональных циклов. Ученые обнаружили в головном мозге «циркадный центр», а в нем — так называемые «часовые гены» биологических ритмов здоровья.

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Открыть в полном размере

ХРОНОБИОЛОГИЯ — НАУКА О СУТОЧНЫХ РИТМАХ ОРГАНИЗМА

В 1632 году английский естествоиспытатель Джон Врен в своем «Трактате о травах» («Herbal Treatise») впервые описал дневные циклы тканевых жидкостей в организме человека, которые он, следуя терминоло гии Аристотеля, назвал «гуморы» (лат. humor — жидкость). Каждый из «приливов» тканевой жидкости, по мнению Врена, длился шесть часов. Гуморальный цикл начинался в девять часов вечера выделением первой гуморы желчи — «сhole» (греч. cholе — желчь) и продолжался до трех утра. Затем наступала фаза черной желчи — «melancholy» (греч. melas — черный, chole — желчь), за которой следовала флегма — «phlegma» (греч.

phlegma — слизь, мокрота), и, наконец, четвертая гумора — кровь.

Конечно, соотнести гуморы с известными ныне физиологическими жидкостями и тканевыми секретами невозможно. Современная медицинская наука никакой связи физиологии с мистическими гуморами не признает. И все же описанные Вреном закономерности смены настроений, интеллектуальных возможностей и физического состояния имеют вполне научную основу. Наука, изучающая суточные ритмы организма, называется хронобиологией (греч. chronos — время). Ее основные понятия сформулиро вали выдающиеся немецкий и американский ученые профессора Юрген Ашофф и Колин Питтендриг, которых в начале 80-х годов прошлого века даже выдвигали на соискание Нобелевской премии. Но высшую научную награду они, к сожалению, так и не получили.

Главное понятие хронобиологии — дневные циклы, длительность которых периодична — около (лат. circa) дня (лат. dies). Поэтому сменяющие друг друга дневные циклы называются циркадными ритмами. Эти ритмы напрямую связаны с циклической сменой освещенности, то есть с вращением Земли вокруг своей оси. Они есть у всех живых существ на Земле: растений, микроорганизмов, беспозвоночных и позвоночных животных, вплоть до высших млекопитающих и человека.

Каждому из нас известен циркадный цикл «бодрствование — сон». В 1959 году Ашофф обнаружил закономерность, которую Питтендриг предложил назвать «правилом Ашоффа». Под этим названием оно вошло в хронобиологию и историю науки. Правило гласит: «У ночных животных активный период (бодрствование) более продолжителен при постоянном освещении, в то время как у дневных животных бодрствование более продолжительно при постоянной темноте». И действительно, как впоследствии установил Ашофф, при длительной изоляции человека или животных в темноте цикл «бодрствование — сон» удлиняется за счет увеличения продолжительности фазы бодрствования. Из правила Ашоффа следует, что именно свет определяет циркадные колебания организма.

ГОРМОНЫ И БИОРИТМЫ

В течение циркадного дня (бодрствования) наша физиология в основном настроена на переработку накопленных питательных веществ, чтобы получить энергию для активной дневной жизни. Напротив, во время циркадной ночи питательные вещества накапливаются, происходят восстановление и «починка» тканей. Как оказалось, эти изменения в интенсивности обмена веществ регулируются эндокринной системой, то есть гормонами. В том, как работает эндокринный механизм управления циркадными циклами, есть много общего с гуморальной теорией Врена.

Вечером, перед наступлением ночи, в кровь из так называемого верхнего мозгового придатка — эпифиза выделяется «гормон ночи» — мелатонин. Это удивительное вещество производится эпифизом только в темное время суток, и время его присутствия в крови прямо пропорционально длительности световой ночи. В ряде случаев бессонница у пожилых людей связана с недостаточностью секреции мелатонина эпифизом. Препараты мелатонина часто используют в качестве снотворных.

Мелатонин вызывает снижение температуры тела, кроме того, он регулирует продолжительность и смену фаз сна. Дело в том, что человеческий сон представляет собой чередование медленноволновой и парадоксальной фаз. Медленноволновый сон характеризуется низкочастотной активностью коры полушарий. Это — «сон без задних ног», время, когда мозг полностью отдыхает. Во время парадоксального сна частота колебаний электрической активности мозга повышается, и мы видим сны. Эта фаза близка к бодрствованию и служит как бы «трамплином» в пробуждение. Медленноволновая и парадоксальная фазы сменяют одна другую 4-5 раз за ночь, в такт изменениям концентрации мелатонина.

Наступление световой ночи сопровождается и другими гормональными изменениями: повышается выработка гормона роста и снижается выработка адренокортикотропного гормона (АКТГ) другим мозговым придатком — гипофизом. Гормон роста стимулирует анаболические процессы, например размножение клеток и накопление питательных веществ (гликогена) в печени. Не зря говорят: «Дети растут во сне». АКТГ вызывает выброс в кровь адреналина и других «гормонов стресса» (глюкокортикоидов) из коры надпочечников, поэтому снижение его уровня позволяет снять дневное возбуждение и мирно заснуть. В момент засыпания из гипофиза выделяются опиоидные гормоны, обладающие наркотическим действием, — эндорфины и энкефалины. Именно поэтому процесс погружения в сон сопровождается приятными ощущениями.

Перед пробуждением здоровый организм должен быть готов к активному бодрствованию, в это время кора надпочечников начинает вырабатывать возбуждающие нервную систему гормоны — глюкокортикоиды. Наиболее активный из них — кортизол, который приводит к повышению давления, учащению сердечных сокращений, повышению тонуса сосудов и снижению свертываемости крови. Вот почему клиническая статистика свидетельствует о том, что острые сердечные приступы и внутримозговые геморрагические инсульты в основном приходятся на раннее утро. Сейчас разрабатываются препараты, снижающие артериальное давление, которые смогут достигать пика концентрации в крови только к утру, предотвращая смертельно опасные приступы.

Почему некоторые люди встают «ни свет, ни заря», а другие не прочь поспать до полудня? Оказывается, известному феномену «сов и жаворонков» есть вполне научное объяснение, которое базируется на работах Жэми Зейцер из Исследовательского центра сна (Sleep Research Center) Станфордского университета в Калифорнии. Она установила, что минимальная концентрация кортизола в крови обычно приходится на середину ночного сна, а ее пик достигается перед пробуждением. У «жаворонков» максимум выброса кортизола происходит раньше, чем у большинства людей, — в 4-5 часов утра. Поэтому «жаворонки» более активны в утренние часы, но быстрее утомляются к вечеру. Их обычно рано начинает клонить ко сну, поскольку гормон сна — мелатонин поступает в кровь задолго до полуночи. У «сов» ситуация обратная: мелатонин выделяется позже, ближе к полуночи, а пик выброса кортизола сдвинут на 7-8 часов утра. Указанные временные рамки сугубо индивидуальны и могут варьировать в зависимости от выраженности утреннего («жаворонки») или вечернего («совы») хронотипов.

«ЦИРКАДНЫЙ ЦЕНТР» НАХОДИТСЯ В ГОЛОВНОМ МОЗГЕ

Что же это за орган, который управляет циркадными колебаниями концентрации гормонов в крови? На этот вопрос ученые долгое время не могли найти ответ. Но ни у кого из них не возникало сомнений, что «циркадный центр» должен находиться в головном мозге. Его существование предсказывали и основатели хронобиологии Ашофф и Питтендриг. Внимание физиологов привлекла давно известная анатомам структура головного мозга — супрахиазматическое ядро, расположенное над (лат. super) перекрестом (греч. chiasmos) зрительных нервов. Оно имеет сигарообразную форму и состоит, например, у грызунов всего из 10 000 нейронов, что очень немного. Другое же, близко расположенное от него, ядро, параветрикулярное, содержит сотни тысяч нейронов. Протяженность супрахиазматического ядра также невелика — не более половины миллиметра, а объем — 0,3 мм3 .

В 1972 году двум группам американских исследователей удалось показать, что супрахиазматическое ядро и есть центр управления биологическими часами организма. Для этого они разрушили ядро в мозге мышей микрохирургическим путем. Роберт Мур и Виктор Эйхлер обнаружили, что у животных с нефункционирующим супрахиазматическим ядром пропадает цикличность выброса в кровь гормонов стресса — адреналина и глюкокортикоидов. Другая научная группа под руководством Фредерика Стефана и Ирвина Цукера изучала двигательную активность грызунов с удаленным «циркадным центром». Обычно мелкие грызуны после пробуждения все время находятся в движении. В лабораторных условиях для регистрации движения к колесу, в котором животное бежит на месте, подсоединяется кабель. Мышки и хомячки в колесе диаметром 30 см пробегают 15-20 км за день! По полученным данным строятся графики, которые называются актограммами. Оказалось, что разрушение супрахиазматического ядра приводит к исчезновению циркадной двигательной активности животных: периоды сна и бодрствования становятся у них хаотичными. Они перестают спать в течение циркадной ночи, то есть в светлое время суток, и бодрствовать циркадным днем, то есть с наступлением темноты.

Супрахиазматическое ядро — структура уникальная. Если ее удалить из мозга грызунов и поместить в «комфортные условия» с теплой питательной средой, насыщенной кислородом, то несколько месяцев в нейронах ядра будут циклически меняться частота и амплитуда поляризации мембраны, а также уровень выработки различных сигнальных молекул — нейротрансмиттеров, передающих нервный импульс с одной клетки на другую.

Что помогает супрахиазматическому ядру сохранять такую стабильную цикличность? Нейроны в нем очень плотно прилегают друг к другу, формируя большое количество межклеточных контактов (синапсов). Благодаря этому изменения электрической активности одного нейрона мгновенно передаются всем клеткам ядра, то есть происходит синхронизация деятельности клеточной популяции. Помимо этого, нейроны супрахиазматического ядра связаны особым видом контактов, которые называются щелевыми. Они представляют собой участки мембран соприкасающихся клеток, в которые встроены белковые трубочки, так называемые коннексины. По этим трубочкам из одной клетки в другую движутся потоки ионов, что также синхронизирует «работу» нейронов ядра. Убедительные доказательства такого механизма представил американский профессор Барри Коннорс на ежегодном съезде нейробиологов «Neuroscience-2004», прошедшим в октябре 2004 года в Сан-Диего (США).

По всей вероятности, супрахиазматическое ядро играет большую роль в защите организма от образования злокачественных опухолей. Доказательство этого в 2002 году продемонстрировали французские и британские исследователи под руководством профессоров Франсис Леви и Майкла Гастингса. Мышам с разрушенным супрахиазматическим ядром прививали раковые опухоли костной ткани (остеосаркома Глазго) и поджелудочной железы (аденокарцинома). Оказалось, что у мышей без «циркадного центра» скорость развития опухолей в 7 раз выше, чем у их обычных собратьев. На связь между нарушениями циркадной ритмики и онкологическими заболеваниями у человека указывают и эпидемиологические исследования. Они свидетельствуют о том, что частота развития рака груди у женщин, длительно работающих в ночную смену, по разным данным, до 60% выше, чем у женщин, работающих в дневное время суток.

ЧАСОВЫЕ ГЕНЫ

Уникальность супрахиазматического ядра еще и в том, что в его клетках работают так называемые часовые гены. Эти гены были впервые обнаружены у плодовой мушки дрозофилы в аналоге головного мозга позвоночных животных — головном ганглии, протоцеребруме. Часовые гены млекопитающих по своей нуклеотидной последовательности оказались очень похожи на гены дрозофилы. Выделяют два семейства часовых генов — периодические (Пер1, 2, 3) и криптохромные (Кри1 и 2). Продукты деятельности этих генов, Пер- и Кри-белки, обладают интересной особенностью. В цитоплазме нейронов они образуют между собой молекулярные комплексы, которые проникают в ядро и подавляют активацию часовых генов и, естественно, выработку соответствующих им белков. В результате концентрация Пер- и Кри-белков в цитоплазме клетки уменьшается, что снова приводит к «разблокированию» и активации генов, которые начинают производить новые порции белков. Так обеспечивается цикличность работы часовых генов. Предполагается, что часовые гены как бы настраивают биохимические процессы, происходящие в клетке, на работу в циркадном режиме, но то, как происходит синхронизация, пока непонятно.

Интересно, что у животных, из генома которых генно-инженерными методами исследователи удалили один из часовых генов Пер 2, спонтанно развиваются опухоли крови — лимфомы.

СВЕТОВОЙ ДЕНЬ И БИОРИТМЫ

Циркадные ритмы «придуманы» природой, чтобы приспособить организм к чередованию светлого и темного времени суток и поэтому не могут не быть связаны с восприятием света. Информация о световом дне поступает в супрахиазматическое ядро из светочувствительной оболочки (сетчатки) глаза. Световая информация от фоторецепторов сетчатки, палочек и колбочек по окончаниям ганглионарных клеток передается в супрахиазматическое ядро. Ганглионарные клетки не просто передают информацию в виде нервного импульса, они синтезируют светочувствительный фермент — меланопсин. Поэтому даже в условиях, когда палочки и колбочки не функционируют (например, при врожденной слепоте), эти клетки способны воспринимать световую, но не зрительную информацию и передавать ее в супрахиазматическое ядро.

Можно подумать, что в полной темноте никакой циркадной активности у супрахиазматического ядра наблюдаться не должно. Но это совсем не так: даже в отсутствие световой информации суточный цикл остается стабильным — изменяется лишь его продолжительность. В случае когда информация о свете в супрахиазматическое ядро не поступает, циркадный период у человека по сравнению с астрономическими сутками удлиняется. Чтобы доказать это, в 1962 году «отец хронобиологии» профессор Юрген Ашофф, о котором шла речь выше, на несколько дней поместил в абсолютно темную квартиру двух волонтеров — своих сыновей. Оказалось, что циклы «бодрствование — сон» после помещения людей в темноту растянулись на полчаса. Сон в полной темноте становится фрагментар ным, поверхностным, в нем доминирует медленноволновая фаза. Человек перестает ощущать сон как глубокое отключение, он как бы грезит наяву. Через 12 лет француз Мишель Сиффрэ повторил эти эксперимен ты на себе и пришел к аналогичным результатам. Интересно, что у ночных животных цикл в темноте, наоборот, сокращается и составляет 23,4 часа. Смысл таких сдвигов в циркадных ритмах до сих пор не вполне ясен.

Изменение длительности светового дня влияет на активность супрахиазматического ядра. Если животных, которых в течение нескольких недель содержали в стабильном режиме (12 часов при свете и 12 часов в темноте), затем помещали в другие световые циклы (например, 18 часов при свете и 6 часов в темноте), у них происходило нарушение периодичности активного бодрствования и сна. Подобное происходит и с человеком, когда изменяется освещенность.

Цикл «сон — бодрствование» у диких животных полностью совпадает с периодами светового дня. В современном человеческом обществе «24/7» (24 часа в сутках, 7 дней в неделе) несоответствие биологических ритмов реальному суточному циклу приводит к «циркадным стрессам», которые, в свою очередь, могут служить причиной развития многих заболеваний, включая депрессии, бессонницу, патологию сердечно-сосудистой системы и рак. Существует даже такое понятие, как сезонная аффективная болезнь — сезонная депрессия, связанная с уменьшением продолжительности светового дня зимой. Известно, что в северных странах, например в Скандинавии, где несоответствие длительно сти светового дня активному периоду особенно ощутимо, среди населения очень велика частота депрессий и суицидов.

При сезонной депрессии в крови больного повышается уровень основного гормона надпочечников — кортизола, который сильно угнетает иммунную систему. А сниженный иммунитет неминуемо ведет к повышенной восприимчивости к инфекционным болезням. Так что не исключено, что короткий световой день — одна из причин всплеска заболеваемости вирусными инфекциями в зимний период.

СУТОЧНЫЕ РИТМЫ ОРГАНОВ И ТКАНЕЙ

На сегодняшний день установлено, что именно супрахиазматическое ядро посылает сигналы в центры мозга, ответственные за циклическую выработку гормонов-регуляторов суточной активности организма. Одним из таких регуляторных центров служит паравентрикулярное ядро гипоталамуса, откуда сигнал о «запуске» синтеза гормона роста или АКТГ передается в гипофиз. Так что супрахиазматическое ядро можно назвать «дирижером» циркадной активности организма. Но и другие клетки подчиняются своим циркадным ритмам. Известно, что в клетках сердца, печени, легких, поджелудочной железы, почек, мышечной и соединительной тканей работают часовые гены. Деятельность этих периферических систем подчинена своим собственным суточным ритмам, которые в целом совпадают с цикличностью супрахиазматического ядра, но сдвинуты во времени. Вопрос о том, каким образом «дирижер циркадного оркестра» управляет функционированием «оркестрантов», остается ключевой проблемой современной хронобиологии.

Циклично функционирующие органы довольно легко вывести из-под контроля супрахиазмати ческого ядра. В 2000-2004 годах вышла серия сенсационных работ швейцарской и американской исследовательских групп, руководимых Юли Шиблером и Майклом Менакером. В экспериментах, проведенных учеными, ночных грызунов кормили только в светлое время суток. Для мышей это так же противоестественн о, как для человека, которому давали бы возможность есть только ночью. В результате циркадная активность часовых генов во внутренних органах животных постепенно перестраивал ась полностью и переставала совпадать с циркадной ритмикой супрахиазматического ядра. Возвращение же к нормальным синхронным биоритмам происходило сразу после начала их кормления в обычное для них время бодрствования, то есть ночное время суток. Механизмы этого феномена пока неизвестны. Но одно ясно точно: вывести все тело из-под контроля супрахиазматического ядра просто — надо лишь кардинально изменить режим питания, начав обедать по ночам. Поэтому строгий режим приема пищи не пустой звук. Особенно важно следовать ему в детстве, поскольку биологические часы «заводятся» в самом раннем возрасте.

Сердце, как и все внутренние органы, тоже обладает собственной циркадной активностью. В искусственных условиях оно проявляет значительные циркадные колебания, что выражается в циклическом изменении его сократительной функции и уровня потребления кислорода. Биоритмы сердца совпадают с активностью «сердечных» часовых генов. В гипертрофированном сердце (в котором мышечная масса увеличена из-за разрастания клеток) колебания активности сердца и «сердечных» часовых генов исчезают. Поэтому не исключено и обратное: сбой в суточной активности клеток сердца может вызвать его гипертрофию с последующим развитием сердечной недостаточности. Так что нарушения режима дня и питания с большой вероятностью могут быть причиной сердечной патологии.

Суточным ритмам подчинены не только эндокринная система и внутренние органы, жизнедеятельность клеток в периферических тканях тоже идет по специфической циркадной программе. Эта область исследований только начинает развиваться, но уже накоплены интересные данные. Так, в клетках внутренних органов грызунов синтез новых молекул ДНК преимущественно приходится на начало циркадной ночи, то есть на утро, а деление клеток активно начинается в начале циркадного дня, то есть вечером. Циклически меняется интенсивность роста клеток слизистой оболочки рта человека. Что особенно важно, согласно суточным ритмам меняется и активность белков, отвечающих за размножение клеток, например топоизомеразы II α — белка, который часто служит «мишенью» действия химиотерапевтических препаратов. Данный факт имеет исключительное значение для лечения злокачественных опухолей. Как показывают клинические наблюдения, проведение химиотерапии в циркадный период, соответствующий пику выработки топоизомеразы, намного эффективнее, чем однократное или постоянное введение химиопрепаратов в произвольное время.

Ни у кого из ученых не вызывает сомнения, что циркадные ритмы — один из основополагающих биологических механизмов, благодаря которому за миллионы лет эволюции все обитатели Земли приспособились к световому суточному циклу. Хотя человек и является высокоприспособленным существом, что и позволило ему стать самым многочисленным видом среди млекопитающих, цивилизация неизбежно разрушает его биологический ритм. И в то время как растения и животные следуют природной циркадной ритмике, человеку приходится намного сложнее. Циркадные стрессы — неотъемлемая черта нашего времени, противостоять им крайне непросто. Однако в наших силах бережно относиться к «биологическим часам» здоровья, четко следуя режиму сна, бодрствования и питания.

Иллюстрация «Жизнь растений по биологическим часам.»
Не только животные, но и растения живут по «биологическим часам». Дневные цветы закрывают и открывают лепестки в зависимости от освещенности — это известно всем. Однако не каждый знает, что образование нектара тоже подчиняется суточным ритмам. Причем пчелы опыляют цветы только в определенные часы — в моменты выработки наибольшего количества нектара. Это наблюдение было сделано на заре хронобиологии — в начале ХХ века — немецкими учеными Карлом фон Фришем и Ингеборгом Белингом.

Иллюстрация «Схема «идеальных» суточных ритмов синтеза «гормона бодрствования» — кортизола и «гормона сна» — мелатонина.»
У большинства людей уровень кортизола в крови начинает нарастать с полуночи и достигает максимума к 6-8 часам утра. К этому времени практически прекращается выработка мелатонина. Приблизительно через 12 часов концентрация кортизола начинает снижаться, а спустя еще 2 часа запускается синтез мелатонина. Но эти временные рамки весьма условны. У «жаворонков», например, кортизол достигает максимального уровня раньше — к 4-5 часам утра, у «сов» позже — к 9-11 часам. В зависимости от хронотипа смещаются и пики выброса мелатонина.

Иллюстрация «График зависимости количества инфарктов со смертельным исходом.»
На графике представлена зависимость количества инфарктов со смертельным исходом среди больных, поступивших в клинику Медицинского колледжа университета Кентукки (США) в 1983 году, от времени суток. Как видно из графика, пик количества сердечных приступов приходится на временной промежуток с 6 до 9 часов утра. Это связано с циркадной активацией сердечно-сосудистой системы перед пробуждением.

Иллюстрация «Супрахиазматическое ядро.»
Если супрахиазматическое ядро поместить в «комфортные» физиологические условия (левый снимок) и записать электрическую активность его нейронов в течение суток, то она будет выглядеть как периодические нарастания амплитуды разрядов (потенциала действия) с максимумами каждые 24 часа (правая диаграмма).

Иллюстрация «Ночные животные — хомяки в период бодрствования находятся в постоянном движении.»
В лабораторных условиях для регистрации двигательной активности грызунов к колесу, в котором животное бежит на месте, подсоединяется кабель. По полученным данным строятся графики, которые называются актограммами.

Иллюстрация «Главный «дирижер» биологических ритмов — супрахиазматическое ядро (СХЯ) располагается в гипоталамусе, эволюционно древнем отделе мозга.»
Гипоталамус выделен рамкой на верхнем рисунке, сделанном с продольного разреза мозга человека. Супрахиазматическое ядро лежит над перекрестом зрительных нервов, через которые оно получает световую информацию из сетчатки глаза. Правый нижний рисунок — это срез гипоталамуса мыши, покрашенный в синий цвет. На левом нижнем рисунке то же самое изображение представлено схематически. Парные шарообразные образования — скопление нейронов, формирующих супрахиазматическое ядро.

Иллюстрация «Схема синтеза «гормона ночи» — мелатонина.»
Мелатонин вызывает засыпание, а его колебания в ночное время суток приводят к смене фаз сна. Секреция мелатонина подчиняется циркадной ритмике и зависит от освещенности: темнота ее стимулирует, а свет, наоборот, подавляет. Информация о свете у млекопитающих поступает в эпифиз сложным путем: от сетчатки глаза до супрахиазматического ядра (ретино-гипоталамический тракт), затем от супрахиазматического ядра до верхнего шейного узла и от верхнего шейного узла в эпифиз. У рыб, амфибий, рептилий и птиц освещенность может управлять выработкой мелатонина через эпифиз напрямую, поскольку свет легко проходит через тонкий череп этих животных. Отсюда еще одно название эпифиза — «третий глаз». Как мелатонин управляет засыпанием и сменой фаз сна, пока непонятно.

Иллюстрация «Супрахиазматическое ядро — контролер циркадной ритмики различных органов и тканей.»
Оно осуществляет свои функции, регулируя выработку гормонов гипофизом и надпочечниками, а также с помощью непосредственной передачи сигнала по отросткам нейронов. Циркадную активность периферических органов можно вывести из-под контроля супрахиазматического ядра, нарушив режим питания — принимая пищу по ночам.

Циркадный ритм, образ жизни и здоровье: описательный обзор

1. Patke A, Murphy PJ, Onat OE, et al. (2017). Мутация гена циркадных часов человека CRY1 при семейном расстройстве фазы сна с задержкой. Cell, 169(2):203–215.e13. [Бесплатная статья PMC] [PubMed] [Google Scholar]

2. Thirlaway K, Upton D. (2009). Психология образа жизни. Лондон: Рутледж. [Google Scholar]

3. Папазян Р., Чжан Ю., Лазар М.А. (2016). Генетические и эпигеномные механизмы циркадной транскрипции млекопитающих. Nat Struct Mol Biol, 23(12):1045–1052. [Бесплатная статья PMC] [PubMed] [Google Scholar]

4. Дворянское собрание в Каролинском институте: Научная основа Открытия молекулярных механизмов, контролирующих циркадный ритм. (2017). https://assets.nobelprize.org/uploads/2018/06 /advanced-medicineprize2017.pdf

5. Фрой О. (2012). Циркадные ритмы и ожирение у млекопитающих. ISRN Obes, 2012: 437198. [Бесплатная статья PMC] [PubMed] [Google Scholar]

6. RAND Corporation (2017). Изменение времени начала школьных занятий может внести в экономику США 83 миллиарда долларов в течение десяти лет. Ежедневная наука. https://www.rand.org/news/press/2017/08/30.html

7. Ругер М., Шеер Ф.А. (2009). Влияние нарушения циркадного ритма на кардиометаболическую систему. Rev Endocr Metab Disord, 10 (4): 245–60. [Бесплатная статья PMC] [PubMed] [Google Scholar]

8. Waterhouse J, Reilly T, Atkinson G, Edwards B. (2007). Джетлаг: тенденции и стратегии преодоления. Ланцет, 369 (9567): 1117–29. [PubMed] [Google Scholar]

9. Spiegel K, Weibel L, Gronfier C, et al. (1996). Суточные пролактиновые профили у ночных работников. Chronobiol Int, 13(4):283–93. [PubMed] [Академия Google]

10. Шпигель Д., Сефтон С. (2002). Re: Работа в ночную смену, свет по ночам и риск рака молочной железы. J Natl Cancer Inst, 94(7):532. [PubMed] [Google Scholar]

11. Амир С., Стюарт Дж. (1999). Влияние света на циркадные часы связано с его эмоциональной ценностью. Неврология, 88(2):339–45. [PubMed] [Google Scholar]

12. Fujioka A, Fujioka T, Tsuruta R, et al. (2011). Влияние постоянной световой среды на нейрогенез и память гиппокампа у мышей. Neurosci Lett, 488(1):41–4. [PubMed] [Академия Google]

13. Dauchy RT, Dauchy EM, Tirrell RP, et al. (2010). Световое загрязнение темной фазы нарушает циркадные ритмы в показателях плазмы эндокринной физиологии и метаболизма у крыс. Comp Med, 60 (5): 348–56. [Бесплатная статья PMC] [PubMed] [Google Scholar]

14. Fonken LK, Finy MS, Walton JC, et al. (2009). Влияние ночного света на тревожные и депрессивные реакции мышей. Behav Brain Res, 205(2):349–54. [PubMed] [Google Scholar]

15. Ma WP, Cao J, Tian M, et al. (2007). Воздействие постоянного постоянного света ухудшает пространственную память и влияет на длительную депрессию у крыс. Нейроски Рес, 59(2): 224–30. [PubMed] [Google Scholar]

16. Salgado-Delgado R, Osorio AT, Saderi N, Escobar C. (2011). Нарушение циркадных ритмов: решающий фактор в этиологии депрессии. Depress Res Treat, 2011: 839743. [Бесплатная статья PMC] [PubMed] [Google Scholar]

17. Farhud D, Tahavorgar A. (2012). Гормон мелатонин, метаболизм и его клинические эффекты. Иранский журнал эндокринологии и метаболизма, 2: 211–223. (на персидском языке). [Google Scholar]

18. Nobelprize.org: официальный сайт Нобелевской премии. 2017. Нобелевская премия по физиологии и медицине 2017 г. https://www.nobelprize.org/nobel_prizes/medicine/laureates/2017/press.html

19. Нагорный С, Лысенко В. (2012). Устали от генетического диабета? Циркадные ритмы и диабет: история MTNR1B? Curr Diab Rep, 12(6):667–72. [PubMed] [Google Scholar]

20. Chatham JC, Young ME. (2013). Регуляция метаболизма миокарда с помощью циркадианных часов кардиомиоцитов. J Mol Cell Cardiol, 55:139–46. [PMC free article] [PubMed] [Google Scholar]

21. Виноградова И.А., Анисимов В.Н., Букалев А.В. (2010). Нарушение циркадных ритмов, вызванное светом ночью, ускоряет старение и способствует онкогенезу у молодых, но не у старых крыс. Старение (Олбани, штат Нью-Йорк), 2 (2): 82–9.2. [Бесплатная статья PMC] [PubMed] [Google Scholar]

22. Wideman CH, Murphy HM. (2009). Постоянный свет вызывает изменения уровня мелатонина, потребления пищи, эффективности кормления, висцерального ожирения и циркадных ритмов у крыс. Nutr Neurosci, 12(5):233–40. [PubMed] [Google Scholar]

23. Фархуд Д.Д. (2015). Влияние образа жизни на здоровье. Журнал общественного здравоохранения Ирана, 44(11): 1442–1444. [Бесплатная статья PMC] [PubMed] [Google Scholar]

24. Muller JE, Tofler GH, Stone PH. (1989). Циркадные вариации и триггеры возникновения острого сердечно-сосудистого заболевания. Тираж, 79(4): 733–43. [PubMed] [Google Scholar]

25. Райт К.П., Боган Р.К., Вятт Дж.К. (2013). Сменная работа и оценка и лечение нарушений сменной работы (SWD). Sleep Med Rev, 17 (1): 41–54. [PubMed] [Google Scholar]

26. Международная диабетическая федерация Диабет и метаболический синдром – движущие силы эпидемии сердечно-сосудистых заболеваний. (2006).

27. Всемирная организация здравоохранения (2016 г.). Глобальный отчет о диабете. http://apps.who.int/iris/bitstream/handle/10665/204871/9789241565257_eng.pdf;jsessionid=9ACE72B65B334163AEEEF34C5FCA34A2?sequence=1

28. Hirota T, Kay SA. (2015). Идентификация низкомолекулярных модуляторов циркадных часов. Methods Enzymol, 551:267–282. [PubMed] [Google Scholar]

29. Россенвассер А.М., Вирц-Джастис А. (1997). Циркадные ритмы и депрессия: клинические и экспериментальные модели. В: Редферн П.Х., Леммер Б., ред. Физиология и фармакология биологических ритмов. Берлин, Германия: Springer Verlag; ПП. 457–486. [Google Scholar]

30. Leibenluft E., Frank E. (2001). Циркадные ритмы при аффективных расстройствах. В Справочнике по поведенческой нейробиологии: Циркадные часы. PP: 625–644, Kluwer Academic/Plenum, Нью-Йорк, штат Нью-Йорк, США. [Академия Google]

31. Fazel S, Wolf A, Chang Z, et al. (2015). Депрессия и насилие: шведское исследование населения. Ланцет Психиатрия, 2 (3): 224-32. [Бесплатная статья PMC] [PubMed] [Google Scholar]

32. Фархуд Д.Д. (2015). Насилие как угрожающий фактор общественному здоровью. Журнал общественного здравоохранения Ирана, 44(8): 1033–1035. [Бесплатная статья PMC] [PubMed] [Google Scholar]

33. He YJ, Qi F, Qi SC. (2001). Орбитальная хиральность Земли и движущая сила биомолекулярной эволюции. Медицинские гипотезы, 56 (4): 493–496. [PubMed] [Академия Google]

34. He YJ, Qi F, Qi SC. (1998). Влияние хирального спирального силового поля на молекулярные спиральные энантиомеры и возможное происхождение биомолекулярной гомохиральности. Медицинские гипотезы, 51 (2): 125–8. [PubMed] [Google Scholar]

35. He YJ, Qi F, Qi SC. (2000). Влияние киральности орбиты Земли на элементарные частицы и объединение киральных асимметрий в жизни на разных уровнях. Медицинские гипотезы, 54 (5): 783–5. [PubMed] [Google Scholar]

36. He YJ, Qi F, Qi SC. (2000). Периодичность орбитальной киральности Земли и возможный механизм биологических ритмов. Медицинские гипотезы, 55 (3): 253–6. [PubMed] [Академия Google]

37. He YJ, Qi F, Qi SC. (2007). Изменения скоростей распада радиоактивных In-111 и P-32, вызванные механическими движениями. Sci China Ser B, 50: 170–174. [Google Scholar]

38. Юйцзянь Хе, ЧжиФэн Дай, Ли Си Цзэн и др. (2008). Орбитальная хиральность Земли и ее возможная роль в биомолекулярной эволюции. Нейроквантология, 6(2): 119–125. [Google Scholar]

39. Билхэм Р., Бендик Р. (2017). Пятилетний прогноз повышенной глобальной сейсмической опасности (приглашенная презентация). Ежегодное собрание GSA в Сиэтле, штат Вашингтон, США. [Академия Google]

Что это такое, как это работает и многое другое

Ваш циркадный ритм — это ваш режим сна и бодрствования в течение 24-часового дня.

Помогает контролировать свой ежедневный график сна и бодрствования. У большинства живых существ есть один. На циркадный ритм влияют свет и темнота, а также другие факторы. Ваш мозг получает сигналы, основанные на окружающей среде, и активирует определенные гормоны, изменяет температуру вашего тела и регулирует ваш метаболизм, чтобы держать вас в тонусе или усыплять.

У некоторых могут наблюдаться нарушения циркадного ритма из-за внешних факторов или нарушений сна. Поддержание здоровых привычек может помочь вам лучше реагировать на этот естественный ритм вашего тела.

Суточный ритм вашего организма определяется несколькими компонентами. Это один из четырех биологических ритмов в организме.

Клетки вашего тела

Во-первых, клетки вашего мозга реагируют на свет и темноту. Ваши глаза улавливают такие изменения в окружающей среде, а затем посылают сигналы различным клеткам о том, когда пора спать или бодрствовать.

Затем эти клетки посылают дополнительные сигналы в другие части мозга, которые активируют другие функции, повышающие утомляемость или бдительность.

Гормоны играют роль

Гормоны, такие как мелатонин и кортизол, могут увеличиваться или уменьшаться в зависимости от вашего циркадного ритма. Мелатонин — это гормон, вызывающий сонливость, и ваше тело выделяет больше его ночью и подавляет днем. Кортизол может сделать вас более внимательным, и ваше тело вырабатывает его больше по утрам.

Другие гормоны, которые играют роль в бдительности и циркадном ритме, включают:

  • вазопрессин
  • ацетилхолин
  • инсулин
  • лептин

Другие факторы

Температура тела и обмен веществ также являются частью вашего циркадного ритма. Ваша температура падает, когда вы спите, и повышается в часы бодрствования. Кроме того, ваш метаболизм работает с разной скоростью в течение дня.

Другие факторы также могут влиять на ваш циркадный ритм. Ваш ритм может меняться в зависимости от вашего рабочего времени, физической активности, стресса и беспокойства, а также дополнительных привычек или образа жизни.

Возраст — еще один фактор, влияющий на ваш циркадный ритм. Младенцы, подростки и взрослые по-разному воспринимают циркадные ритмы.

У новорожденных циркадный ритм не развивается, пока им не исполнится несколько месяцев. Это может привести к неустойчивому режиму сна в первые дни, недели и месяцы их жизни. Их циркадный ритм развивается по мере того, как они адаптируются к окружающей среде и испытывают изменения в своем теле. Младенцы начинают выделять мелатонин, когда им около 3 месяцев, а гормон кортизол вырабатывается от 2 до 9 месяцев.месяцев.

Малыши и дети имеют достаточно регулируемый график сна, как только их циркадные ритмы и функции организма созреют. Детям необходимо около 9 или 10 часов сна в сутки.

Подростки испытывают сдвиг в своем циркадном ритме, известный как задержка фазы сна. В отличие от детских лет, когда ложились спать рано, около 8 или 9 часов вечера, подростки могут не уставать до глубокой ночи.

Уровень мелатонина может не повышаться ближе к 10 или 11 часам вечера. или даже позже. Этот сдвиг также приводит к тому, что подростку нужно спать позже по утрам. Их пиковые часы сна ночью — с 3 до 7 часов утра, а может быть, даже позже, но им все равно нужно столько же сна, сколько и детям.

Взрослые должны иметь довольно устойчивый циркадный ритм, если они придерживаются здоровых привычек. Их время сна и пробуждения должно оставаться стабильным, если они следуют довольно регулярному графику и стремятся спать от 7 до 9 часов каждую ночь. Взрослые, вероятно, засыпают задолго до полуночи, так как мелатонин высвобождается в их организме. Во взрослом возрасте мы достигаем самых утомительных фаз дня с 2 до 4 часов утра и с 13 до 15 часов.

Пожилые люди могут заметить изменения своих циркадных ритмов с возрастом, и они начинают ложиться спать раньше, чем раньше, и просыпаться в предрассветные часы. В общем, это нормальная часть старения.

Иногда невозможно следовать своим циркадным ритмам, а потребности образа жизни и внутренние часы расходятся. Это может произойти из-за:

  • ночных или нерабочих рабочих смен, которые не соответствуют естественному световому и темному времени суток
  • рабочих смен с неустойчивым графиком
  • поездок, которые охватывают один или несколько часовых поясов
  • образ жизни, который поощряет ночные часы или раннее пробуждение
  • лекарства
  • стресс
  • расстройства психического здоровья
  • состояния здоровья, такие как повреждение головного мозга, деменция, травмы головы или слепота удобное спальное место

Как циркадные ритмы связаны со сменой часовых поясов?

Смена часовых поясов происходит, когда вы быстро перемещаетесь через несколько часовых поясов, и ваше тело не соответствует времени вашей новой среды. Ваш циркадный ритм настроен на то место, откуда вы ушли, и он должен перестроиться. Это может привести к ощущению усталости в течение дня или ощущению полного бодрствования ночью.

Вы можете испытывать другие изменения, влияющие на ваше самочувствие, пока ваш циркадный ритм снова не нормализуется. Чтобы привыкнуть к новому часовому поясу, может потребоваться день или даже неделя. Обычно на каждый час смены уходит день, чтобы отрегулировать цикл сна и бодрствования.

Вы даже можете испытывать легкие симптомы смены часовых поясов, когда часы переводятся назад или вперед для перехода на летнее время. Нарушение может длиться недолго, но вашему телу может потребоваться несколько дней, чтобы приспособиться.

У вас могут возникнуть нарушения циркадных ритмов, но вы можете восстановить их. Вот несколько советов по продвижению здорового 24-часового графика:

  • Старайтесь каждый день придерживаться распорядка.
  • Проводите время на свежем воздухе, когда на улице светло, чтобы бодрствовать.
  • Выполняйте ежедневные физические упражнения — обычно рекомендуется 20 или более минут аэробных упражнений.
  • Спите в среде, способствующей отдыху, с надлежащим освещением, комфортной температурой и поддерживающим матрасом.
  • Избегайте алкоголя, кофеина и никотина по вечерам.
  • Выключайте экраны перед сном и попробуйте заняться чем-нибудь, например, чтением книги или медитацией.
  • Не вздремните поздно днем ​​или вечером.

Иногда изменения вашего циркадного ритма могут быть признаком более серьезного заболевания, такого как расстройство сна, связанное с циркадным ритмом. Двумя из этих расстройств являются продвинутая фаза сна и отсроченная фаза сна. Вы можете быть более восприимчивы к ним, если вы работаете нерегулярно, имеете слабое зрение или являетесь подростком или пожилым человеком.

Нарушение фазы отсроченного сна возникает, когда вы ложитесь спать и просыпаетесь на 2 часа или больше позже, чем у большинства людей. Вы можете считать себя «совой». Подростки и молодые люди более склонны к этому заболеванию.

Прогрессирующее расстройство фазы сна противоположно расстройству отсроченной фазы сна. На самом деле вы засыпаете на несколько часов раньше большинства людей, а затем просыпаетесь очень рано утром.

Нарушения, связанные с вашими циркадными ритмами, могут приводить к проблемам с засыпанием ночью, частым пробуждениям в течение ночи, а также к пробуждению и невозможности снова заснуть посреди ночи.

Симптомы, связанные с этими состояниями, включают:

  • бессонницу
  • потеря сна
  • проблемы с пробуждением по утрам
  • усталость в течение дня
  • депрессия или стресс

Другие состояния, связанные с вашим циркадным ритмом, включают:

  • расстройство сменной работы, вызванное работой в нерабочее время или работой с непредсказуемым графиком
  • нерегулярным расстройством сна и бодрствования, вызванным неспособностью установить регулярный график сна и бодрствования
  • Лечение этих состояний может включать различные подходы. Вы можете попробовать:

    • установить более регулярный график
    • использовать световую терапию
    • принимать лекарства или добавки, такие как мелатонин, чтобы легче заснуть ваш циркадный ритм жизненно важен для вашего здоровья. Если вы испытываете нарушение циркадного ритма и изо всех сил пытаетесь выспаться, вы можете испытывать как краткосрочные, так и долгосрочные последствия для своего здоровья.

      Нарушение вашего циркадного ритма может привести к проблемам со здоровьем в некоторых частях тела в долгосрочной перспективе. Сюда входят:

      • органы
      • сердечно-сосудистая система
      • обмен веществ
      • желудочно-кишечный тракт
      • кожа

      Вы также можете быть более подвержены диабету, ожирению и психическим заболеваниям.

      Кратковременные нарушения вашего циркадного ритма могут привести к:

      • проблемам с памятью
      • недостаток энергии
      • замедленное заживление ран
      • изменения гормонального цикла, которые могут повлиять на фертильность
      • проблемы с пищеварением и кишечником
      • изменения температуры тела

      о проблеме с вашим циркадным ритмом. Если вы испытываете одну из этих проблем в течение длительного периода времени, подумайте о том, чтобы записаться на прием к врачу:

      • у вас проблемы со сном каждую ночь
      • трудно заснуть
      • просыпаться несколько раз за ночь и не высыпаться
      • трудно просыпаться
      • чувствовать сильную усталость во время бодрствования часовых биологических часов, помогая вашему телу работать по здоровому графику сна и бодрствования.

    About the Author

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    Related Posts