ГОМЕОСТАЗ • Большая российская энциклопедия
Авторы: Ю. В. Наточин, Ю. В. Ирхин
ГОМЕОСТА́З, гомеостазис (от гомео… и греч. στᾴσις – неподвижность, состояние).
В биологии Г. – способность живых организмов сохранять динамич. постоянство состава и свойств внутр. среды. Идея о наличии в организме комплекса физиологич. механизмов, направленных на поддержание постоянства внутр. среды, была высказана К. Бернаром во 2-й пол. 19 в. Он считал, что в основе свободной и независимой жизни организмов в постоянно меняющейся внешней среде лежит постоянство физико-химич. условий внутр. среды. Для обозначения комплекса процессов в живом организме, обеспечивающих постоянство таких условий, У. Кеннон предложил термин «Г.» (1929).
Появление на Земле одноклеточных организмов было связано с формированием и поддержанием внутри клетки в течение всей её жизни специфич. физико-химич. условий, отличных от условий окружающей среды. Дальнейшая эволюция жизни сопровождалась возникновением многоклеточных животных, дифференцировкой их клеток, формированием внутр. среды, в которой находятся и взаимодействуют между собой клетки. Появляются система внеклеточных жидкостей, лимфа, кровь, из которых клетки извлекают необходимые органич. и неорганич. вещества, O2 и выделяют конечные продукты обмена. В ходе эволюции многоклеточных животных формируются специализир. органы (дыхания, кровообращения, пищеварения, выделения) и системы (осморегуляции, волюморегуляции, терморегуляции, поддержания на заданном уровне концентрации каждого из ионов, кислотно-щелочного равновесия и др.). Они обеспечивают постоянство физико-химич. состава жидкостей внутр. среды. Помимо крови, лимфы, околоклеточной жидкости формируются и специализир. внеклеточные жидкости (напр., спинномозговая, внутриглазная, эндолимфа и перилимфа внутреннего уха), назначение которых состоит в поддержании спец. условий для функционирования клеток целых органов.
У морских беспозвоночных Г. касается объёма жидкостей внутр. среды, концентрации в ней отд. ионов, рН. Адаптация организмов к пресным водам потребовала формирования новой системы регуляции – поддержания на постоянном уровне осмотич. давления жидкостей внутр. среды, удаления из организма избытка воды. К особо контролируемым физико-химич. параметрам внутр. среды относятся её осмотич. давление (изоосмия), концентрация отд. ионов (изоиония), объём крови (изоволемия), её рН, у птиц и млекопитающих также стабилизированная температура тела (изотермия) и др.
Постоянство физико-химич. условий во внутр. среде, состояние околоклеточной среды служат жизненно важным фактором, необходимым для эффективной работы клеток; их адекватная реакция на сигналы из внешней (напр. , световые, звуковые, температурные раздражители) и внутренней (в т. ч. импульсы нервной системы, гормоны, аутакоиды) среды возможна при поддержании Г. Особенно высокая степень Г. характерна для млекопитающих, у которых наиболее строго поддерживаются осмоляльность крови, концентрация в ней ионов Са2+, рН, изотермия.
Г. создаёт возможность для адекватных реакций клеток, поддержания необходимого уровня их метаболизма и ответа на внешние воздействия. В регуляции физико-химич. параметров внутр. среды участвуют нервная и эндокринная системы, аутакоиды. Повышение качества регуляции для сохранения стабильности параметров внутр. среды является важным фактором выживания особи и процветания вида.
Термин «клеточный Г.» противоречит смысловому значению понятия, предложенного К. Бернаром и У. Кенноном.
Гомеостаз в кибернетике. В 1950-х гг. Н. Винер универсализировал понятие Г. и применил его к функционированию достаточно сложных саморегулирующихся систем. В результате понятие Г. стало широко использоваться не только в биологии, но и в др. науках. По Винеру, гомеостатич. алгоритм определяет базовые параметры системы, значит. изменения которых нарушают или разрушают её нормальное функционирование и развитие; фиксирует пределы допустимого изменения установленных параметров под влиянием как внешней, так и внутр. среды; выявляет совокупность механизмов, начинающих проявлять себя при критич. изменении базовых параметров системы. Гомеостатич. взаимодействие открытой системы с окружающим миром обусловливает её адаптивность двоякого рода: приспособление системы к внешнему миру путём определённых внутр. изменений и активное воздействие системного объекта на среду, т. е. «приспособление» среды к своим «потребностям» путём извлечения и усвоения необходимых ресурсов. Ключевую роль для гомеостатич. процессов играет не просто обратная связь, а отрицательная обратная связь, обеспечивающая (в определённых пределах) возвращение к равновесию в ответ на возмущающие воздействия. Механизмы Г. обеспечивают лишь адаптацию системы, а не её развитие. Для закрытых систем характерно ограниченное взаимодействие с окружающей средой и отсутствие (или наличие только в самой незначительной степени) механизмов Г., обеспечивающих самонастройку системы.
В социальных и политических науках понятие Г. применяется преим. при анализе функционирования и динамики социальной и политич. систем, а также некоторых системных организаций (государства, партий, профсоюзов и др.). В этой сфере подвижное равновесное состояние систем (и подсистем) сохраняется через противодействие их структур, социальных групп и институтов внешним и внутр. факторам, нарушающим осн. принципы функционирования (Т. Парсонс, Д. Истон). В политич. анализе и управлении используются социодинамич. модели политич. и социальной систем общества, в которых выделяются прямые и обратные гомеостатич. взаимодействия системы с внешней средой. В социально-политич. системах велика роль человеческого фактора (риск ошибок и др.) при принятии решений, поскольку гиперактивное воздействие на среду и её изменение формируются самими социально-политич. агентами. Соответственно в этой сфере велика функциональная роль обществ. контроля (обратной связи) над принятием институциональными органами значимых для социума решений, самоорганизации и оптимизации системы. Разбалансировка политич. (социальной) системы ведёт к кризисным явлениям или даже к её разрушению, о чём свидетельствует история революций. Социально-политич. системы закрытого (тоталитарного) типа допускают дозированное, жёсткое взаимодействие с внешней средой, а также с себе подобными системами; для них характерна слабая обратная связь. В конечном счёте они не успевают адекватно отвечать на вызовы времени, проигрывают в экономич. развитии и становятся неустойчивыми.
В макроэкономике гомеостатич. подход лёг в основу теории общего экономич. равновесия (кейнсианская и неоклассическая модели). Принцип Г. применяется в социальной экологии, которая рассматривает природную среду как дифференцированную систему динамич. равновесия; широко используется при анализе взаимодействия национальных структур с наднациональными институтами и организациями в условиях глобальных отношений.
Как математика может помочь нам понять человеческое тело
1580
Добавить в закладки
Ученые утверждают, что теория графов помогает биологам изучать гомеостаз, — пишет eurekalert.org.
Здоровые человеческие тела хорошо справляются с регулированием: наша температура остается на уровне 98,6 градусов по Фаренгейту, независимо от того, насколько высока или низка температура вокруг нас. Уровень сахара в крови остается довольно постоянным, даже когда мы выпиваем стакан сока. Мы удерживаем необходимое количество кальция в костях и в других частях нашего тела.
Мы не смогли бы выжить без этого регулирования, называемого гомеостазом. А когда системы выходят из строя, происходит болезнь, а иногда смерть.
В презентациях на ежегодном собрании Американской ассоциации содействия развитию науки исследователи утверждали, что математика может помочь объяснить и предсказать эти сбои, потенциально предлагая новые способы для предотвращения и лечения в ситуациях, когда что-то идет не так.
Гомеостаз «является биологическим явлением, и без него биологические системы не работают, — сказал Марти Голубицкий, один из докладчиков и выдающийся профессор естественных и математических наук в Университете штата Огайо. – И, если бы у вас были подробные, точные математические модели, вы могли бы численно исследовать эти системы, найти места, где этот контроль действительно происходит, а где есть сбой, и понять, как это исправить».
Ученые хорошо разбираются в биологических причинах, по которым происходит это регулирование: определенные системы в наших телах должны оставаться постоянными, чтобы функционировать и поддерживать наши тела. Однако математика, лежащая в основе этого, менее достоверна.
Но понимание гомеостаза, в том числе прогнозирование его изменений и расчет способов поддержания тела в регуляции, несмотря на сбои в системах организма, которые управляют этими регуляторами, может быть способом оказания целевой медицинской помощи людям, которые в ней нуждаются, сказала Джанет Бест профессор математики в штате Огайо.
«Это часть точной медицины», — сказал Бест, который также является со-директором Института математических биологических наук штата Огайо. «Люди разные, и вам нужна модель, которая может работать с разными людьми. И мы думаем, что это то, что мы здесь разработали».
Исследователи из MBI и других институтов, изучающие взаимосвязь математики и биологии, построили модели, объясняющие, как организм поддерживает гомеостаз в различных системах. В основе этих моделей лежит граф — математическая концепция, которая пытается объяснить, как объекты связаны друг с другом. (Если вы изучали алгебру или геометрию в средней школе, вы, вероятно, выучили некоторые основы теории графов.)
Голубицкий и Бест сказали, что теория графов может помочь объяснить и предсказать изменения гомеостаза в организме. По их словам, это объяснение может быть полезно биологам и другим специалистам, ищущим способы вмешательства в случае нарушения гомеостаза. Этот распад вызывает ряд проблем — например, может выражаться переизбытком глюкозы в крови человека или недостаточным количеством кальция в его костях.
Презентации AAAS были сосредоточены как на графике, который моделирует, как организм регулирует уровень дофамина посредством гомеостаза, так и на том, как теория графов помогает определить свойства графиков, которые могут помочь предсказать гомеостаз. Голубицкий и Бест описали, как дофамин и ферменты, которые его расщепляют, могут быть представлены в виде математической формулы, связанной с графиком.
Они показали, что, вычисляя изменения в узлах, можно рассчитать или предсказать изменения в уровнях дофамина. По словам Голубицкого, этот подход может быть распространен на другие системы, хотя для уверенности необходимы дальнейшие исследования. По его словам, это исследование уже ведется.
«Гомеостаз — достаточно важная область биологии, и если математика может что-то сделать для него, то это успех», — сказал он.
[Фото: ru.123rf.com/profile_siberianart]
Автор Подготовила Анна Юдина
биология гомеостаз дефицит микроэлементов математика минералы и витамины
Источник: www.
Информация предоставлена Информационным агентством «Научная Россия». Свидетельство о регистрации СМИ: ИА № ФС77-62580, выдано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций 31 июля 2015 года.
НАУКА ДЕТЯМ
Сверхбыстрые протоны для лечения рака. Главный научный сотрудник Института ядерных исследований РАН С.В. Акулиничев ― об ультрафлеш-терапии
10:30 / Биология, Здравоохранение, Медицина
Мероприятия ко Дню российской науки 2023
10:30 / Десятилетие науки и технологий, Досуг, Наука и общество
75 лет назад получен первый эхосигнал от Луны
10:00 / Астрономия, Астрофизика, Наука и общество
«МК», Веденеева Наталья: Искусственный мир победил: информация, сфабрикованная нейросетями, неотличима от правдивой
09:20 / Информационные технологии, Наука и общество
Ученые СПб ФИЦ РАН разработали интеллектуальную систему, помогающую врачам общаться с глухими пациентами
12:00 / Здравоохранение
Заседание президиума РАН 07. 02.2023 – Прямая трансляция!
11:00 / Наука и общество, Трансляции
«Король издательского дела». 172 года назад родился Иван Сытин
10:00 / История, Персона, Чтение
Российские учёные извлекли из ледника в Антарктиде древний лёд возрастом 1 миллион лет
14:00 / Климат, Геология
В СПбПУ научились получать более точные снимки при диагностике глазных заболеваний
12:00 / Медицина, Физика
4 февраля родился Питирим Сорокин — социолог, культуролог и педагог
10:00 / История, Наука и общество
Памяти великого ученого. Наука в глобальном мире. «Очевиднное — невероятное» эфир 10.05.2008
04.03.2019
Памяти великого ученого. Нанотехнологии. «Очевидное — невероятное» эфир 3.08.2002
04.03.2019
Вспоминая Сергея Петровича Капицу
14.02.2017
История новогодних праздников
01.08.2014
Смотреть все
Гомеостаз | Биология для специальностей II
Обсудите важность гомеостаза у животных
Органы и системы органов животных постоянно приспосабливаются к внутренним и внешним изменениям посредством процесса, называемого гомеостазом («устойчивое состояние»). Эти изменения могут быть в уровне глюкозы или кальция в крови или во внешней температуре. Гомеостаз означает поддержание динамического равновесия в организме. Он динамичен, потому что постоянно приспосабливается к изменениям, с которыми сталкиваются системы организма. Это равновесие, потому что функции тела удерживаются в определенных пределах. Даже внешне неактивное животное поддерживает это гомеостатическое равновесие.
Цели обучения
- Дать определение гомеостаза
- Опишите факторы, влияющие на гомеостаз
- Опишите процесс терморегуляции
- Опишите терморегуляцию эндотермических и экзотермических животных
Что такое гомеостаз?
Гомеостаз в общем смысле относится к стабильности, равновесию или равновесию. Физиологически это попытка организма поддерживать постоянную и сбалансированную внутреннюю среду, что требует постоянного контроля и корректировки по мере изменения условий. Регулировка физиологических систем в организме называется гомеостатической регуляцией, которая включает три части или механизма:
- приемник
- центр управления
- эффектор
Рецептор получает информацию о том, что что-то в окружающей среде меняется. Центр управления или центр интеграции получает и обрабатывает информацию от приемника. Эффектор реагирует на команды центра управления, противодействуя или усиливая стимул. Этот непрерывный процесс постоянно работает для восстановления и поддержания гомеостаза. Например, при регуляции температуры тела температурные рецепторы в коже передают информацию в мозг (центр управления), который сигнализирует эффекторам: кровеносным сосудам и потовым железам в коже. Поскольку внутренняя и внешняя среда тела постоянно меняется, необходимо постоянно вносить коррективы, чтобы оставаться на определенном уровне или близком к нему: уставка .
Целью гомеостаза является поддержание равновесия вокруг определенного значения какого-либо аспекта тела или его клеток, называемого заданным значением. Несмотря на нормальные отклонения от заданной точки, системы организма обычно пытаются вернуться к этой точке. Изменение внутренней или внешней среды называется раздражителем и улавливается рецептором; реакция системы заключается в корректировке действий системы таким образом, чтобы значение возвращалось к заданному значению.
Когда в окружающей среде животного происходит изменение, необходимо произвести корректировку, чтобы внутренняя среда тела и клеток оставалась стабильной. Рецептор, воспринимающий изменения в окружающей среде, является частью механизма обратной связи. Стимул — температура, уровень глюкозы или кальция — обнаруживается рецептором. Рецептор посылает информацию в центр управления, часто в мозг, который передает соответствующие сигналы эффекторному органу, способному вызвать соответствующее изменение, либо вверх, либо вниз, в зависимости от информации, которую посылал датчик.
Контроль гомеостаза
Когда в окружающей среде животного происходят изменения, необходимо внести коррективы. Рецептор ощущает изменение в окружающей среде, затем посылает сигнал в центр управления (в большинстве случаев в мозг), который, в свою очередь, генерирует ответ, который передается эффектору. Эффектор представляет собой мышцу (сокращающуюся или расслабляющуюся) или секретирующую железу. Гомеостаз поддерживается петлями отрицательной обратной связи. Петли положительной обратной связи фактически выталкивают организм еще дальше из гомеостаза, но могут быть необходимы для возникновения жизни. Гомеостаз контролируется нервной и эндокринной системой млекопитающих.
Механизмы отрицательной обратной связи
Любой гомеостатический процесс, изменяющий направление стимула, является петлей отрицательной обратной связи . Он может усиливать или ослаблять стимул, но стимул не может продолжаться так, как это было до того, как рецептор его почувствовал. Другими словами, если уровень слишком высок, тело делает что-то, чтобы понизить его, и наоборот, если уровень слишком низок, тело делает что-то, чтобы поднять его. Отсюда и термин «отрицательная обратная связь». Примером может служить поддержание уровня глюкозы в крови у животных. Когда животное поело, уровень глюкозы в крови повышается. Это ощущается нервной системой. Это чувствуют специализированные клетки поджелудочной железы, и эндокринная система вырабатывает гормон инсулин. Инсулин вызывает снижение уровня глюкозы в крови, как и следовало ожидать в системе с отрицательной обратной связью, как показано на рисунке 1. Однако, если животное не ело и уровень глюкозы в крови снижается, это ощущается другой группой клеток поджелудочной железы, высвобождается гормон глюкагон, вызывающий повышение уровня глюкозы. Это по-прежнему петля отрицательной обратной связи, но не в том направлении, которое ожидается при использовании термина «отрицательный». Другим примером увеличения в результате петли обратной связи является контроль уровня кальция в крови. Если уровень кальция снижается, специализированные клетки паращитовидной железы чувствуют это и высвобождают паратиреоидный гормон (ПТГ), вызывая повышенное всасывание кальция через кишечник и почки и, возможно, разрушение костей для высвобождения кальция. Эффекты ПТГ заключаются в повышении уровня этого элемента в крови. Петли отрицательной обратной связи являются преобладающим механизмом, используемым в гомеостазе.
Рисунок 1. Уровень сахара в крови контролируется петлей отрицательной обратной связи. (кредит: модификация работы Джона Салливана)
Петля положительной обратной связи
Петля положительной обратной связи поддерживает направление стимула, возможно, ускоряя его. В телах животных существует несколько примеров петель положительной обратной связи, но один из них обнаружен в каскаде химических реакций, которые приводят к свертыванию крови или коагуляции. Когда активируется один фактор свертывания крови, он последовательно активирует следующий фактор, пока не образуется фибриновый сгусток. Направление сохраняется, не меняется, так что это положительная обратная связь. Другим примером положительной обратной связи являются сокращения матки во время родов, как показано на рисунке 2. Гормон окситоцин, вырабатываемый эндокринной системой, стимулирует сокращение матки. Это вызывает боль, воспринимаемую нервной системой. Вместо того, чтобы снижать уровень окситоцина и уменьшать боль, вырабатывается больше окситоцина до тех пор, пока схватки не станут достаточно сильными, чтобы вызвать роды.
Рисунок 2. Рождение человеческого младенца является результатом положительной обратной связи.
Практический вопрос
Укажите, регулируется ли каждый из следующих процессов петлей положительной или отрицательной обратной связи.
- Человек чувствует себя сытым после обильной еды.
- В крови много эритроцитов. В результате эритропоэтин, гормон, стимулирующий выработку новых эритроцитов, больше не высвобождается из почек.
Показать ответ
Уставка
Можно настроить уставку системы. Когда это происходит, петля обратной связи поддерживает новую настройку. Примером этого является артериальное давление: со временем нормальное или установленное значение артериального давления может повышаться в результате продолжающегося повышения артериального давления. Тело больше не распознает повышение как ненормальное, и не предпринимается никаких попыток вернуться к более низкому заданному значению. Результатом является поддержание повышенного кровяного давления, которое может иметь вредные последствия для организма. Лекарства могут понизить кровяное давление и понизить контрольную точку в системе до более здорового уровня. Это называется процессом изменение уставки в контуре обратной связи.
Изменения могут быть внесены в группу систем органов тела для поддержания заданного значения в другой системе. Это называется акклиматизация . Это происходит, например, когда животное мигрирует на большую высоту, чем оно привыкло. Чтобы приспособиться к более низким уровням кислорода на новой высоте, организм увеличивает количество эритроцитов, циркулирующих в крови, чтобы обеспечить адекватную доставку кислорода к тканям. Другим примером акклиматизации являются животные, шерсть которых подвержена сезонным изменениям: более толстая шерсть зимой обеспечивает достаточное сохранение тепла, а легкая шерсть летом помогает удерживать температуру тела от повышения до опасного уровня.
Механизмы обратной связи можно понять с точки зрения вождения гоночного автомобиля по трассе: посмотрите короткий видеоурок о петлях положительной и отрицательной обратной связи.
Терморегуляция
Температура тела влияет на активность организма. Как правило, с повышением температуры тела активность ферментов также повышается. При повышении температуры на каждые десять градусов по Цельсию активность ферментов удваивается до определенного предела. Белки организма, в том числе ферменты, начинают денатурировать и терять свои функции при высокой температуре (около 50º C для млекопитающих). Ферментативная активность будет уменьшаться наполовину на каждые десять градусов по Цельсию понижения температуры, вплоть до точки замерзания, за некоторыми исключениями. Некоторые рыбы могут выдерживать замораживание в твердом состоянии и возвращаться к нормальному состоянию при оттаивании.
Посмотрите это видео канала Discovery о терморегуляции, чтобы увидеть иллюстрации этого процесса у различных животных.
Нейронный контроль терморегуляции
Нервная система важна для терморегуляции . Процессы гомеостаза и терморегуляции сосредоточены в гипоталамусе развитого мозга животных.
Практический вопрос
Рисунок 3. Тело способно регулировать температуру в ответ на сигналы нервной системы.
При разрушении бактерий лейкоцитами в кровь выделяются пирогены. Пирогены сбрасывают термостат тела на более высокую температуру, что приводит к лихорадке. Как пирогены могут вызывать повышение температуры тела?
Показать ответ
Гипоталамус поддерживает заданную температуру тела посредством рефлексов, которые вызывают расширение сосудов и потоотделение, когда тело слишком теплое, или сужение сосудов и озноб, когда тело слишком холодное. Он реагирует на химические вещества из организма. Когда бактерия уничтожается фагоцитирующими лейкоцитами, в кровь высвобождаются химические вещества, называемые эндогенными пирогенами. Эти пирогены циркулируют в гипоталамусе и перезагружают термостат. Это позволяет температуре тела повышаться до того, что обычно называют лихорадкой. Повышение температуры тела приводит к сохранению железа, что снижает количество питательных веществ, необходимых бактериям. Повышение температуры тела также увеличивает активность ферментов и защитных клеток животного, подавляя ферменты и активность проникающих микроорганизмов. Наконец, само тепло также может убить патоген. Лихорадка, которая когда-то считалась осложнением инфекции, теперь считается нормальным защитным механизмом.
Эндотермы и эктотермы
Животных можно разделить на две группы: одни сохраняют постоянную температуру тела при различных температурах окружающей среды, в то время как у других температура тела такая же, как и у их окружающей среды, и, таким образом, изменяется в зависимости от окружающей среды. Животные, которые не контролируют температуру своего тела, являются экзотермами; вместо этого они полагаются на внешнюю энергию, чтобы определять температуру своего тела. Эту группу называют хладнокровными, но этот термин может не относиться к животным в пустыне с очень теплой температурой тела. Эндотермы — это животные, которые полагаются на внутренние источники температуры тела, но могут проявлять экстремальные температуры. Эти животные способны поддерживать уровень активности при более низкой температуре, чего не может сделать экзотерм из-за разного уровня активности ферментов. Пойкилотермы — это животные с постоянно меняющейся внутренней температурой, а животное, которое поддерживает постоянную температуру тела перед лицом изменений окружающей среды, называется гомойотермом.
Теплообмен между животным и окружающей средой может осуществляться посредством четырех механизмов: излучение, испарение, конвекция и теплопроводность (рис. 4). Радиация – это излучение электромагнитных «тепловых» волн. Таким образом, тепло исходит от солнца и точно так же излучается от сухой кожи. Тепло может отводиться жидкостью от поверхности при испарении. Это происходит, когда млекопитающее потеет. Конвекционные потоки воздуха отводят тепло от поверхности сухой кожи при прохождении над ней воздуха. Тепло будет передаваться от одной поверхности к другой во время прямого контакта с поверхностями, например, когда животное отдыхает на теплом камне.
Рисунок 4. Теплообмен может происходить по четырем механизмам: (а) излучение, (б) испарение, (в) конвекция или (г) теплопроводность. (кредит b: модификация работы «Kullez»/Flickr; кредит c: модификация работы Chad Rosenthal; кредит d: модификация работы «stacey.d»/Flickr)
Сохранение и рассеивание тепла
Животные сохраняют или отводить тепло различными способами. В определенных климатических условиях у эндотермических животных есть какая-то форма изоляции, такая как мех, жир, перья или их комбинация. Животные с густым мехом или перьями создают изолирующий слой воздуха между кожей и внутренними органами. Белые медведи и тюлени живут и плавают в условиях минусовой температуры и при этом поддерживают постоянную теплую температуру тела. Песец, например, использует свой пушистый хвост в качестве дополнительной теплоизоляции, когда ложится спать в холодную погоду. У млекопитающих наблюдается остаточный эффект от озноба и повышенной мышечной активности: мышцы, приводящие к ворсинкам, вызывают «гусиную кожу», заставляя маленькие волоски вставать дыбом, когда человеку холодно; это имеет предполагаемый эффект повышения температуры тела. Млекопитающие используют слои жира для достижения той же цели. Потеря значительного количества жира в организме ставит под угрозу способность человека сохранять тепло.
Эндотермы используют свою систему кровообращения для поддержания температуры тела. Вазодилатация приносит больше крови и тепла к поверхности тела, способствуя излучению и потере тепла за счет испарения, что способствует охлаждению тела. Вазоконстрикция уменьшает кровоток в периферических кровеносных сосудах, направляя кровь к центру и находящимся там жизненно важным органам и сохраняя тепло. У некоторых животных есть приспособления к системе кровообращения, которые позволяют им передавать тепло от артерий к венам, согревая кровь, возвращающуюся к сердцу. Это называется противоточным теплообменом; препятствует охлаждению сердца и других внутренних органов холодной венозной кровью. Эта адаптация может быть отключена у некоторых животных, чтобы предотвратить перегрев внутренних органов. Противоточная адаптация встречается у многих животных, включая дельфинов, акул, костистых рыб, пчел и колибри. Напротив, аналогичные приспособления могут при необходимости помочь охладить эндотермы, например, трематоды дельфинов и уши слона.
Некоторые экзотермические животные используют изменения в своем поведении, чтобы регулировать температуру тела. Например, пустынное экзотермическое животное может просто искать более прохладные места в самое жаркое время дня в пустыне, чтобы не перегреться. Одни и те же животные могут забираться на скалы, чтобы согреться холодной ночью в пустыне. Некоторые животные ищут воду, чтобы способствовать испарению и охлаждению, как это видно на примере рептилий. Другие экзотермы используют групповую деятельность, такую как активность пчел, чтобы согреть улей, чтобы пережить зиму.
Многие животные, особенно млекопитающие, используют отработанное метаболическое тепло в качестве источника тепла. Когда мышцы сокращаются, большая часть энергии АТФ, используемой в мышечных движениях, тратится впустую и превращается в тепло. Сильный холод вызывает рефлекс дрожи, который выделяет тепло для тела. У многих видов также есть тип жировой ткани, называемый бурым жиром, который специализируется на выработке тепла.
Проверьте свое пониманиеОтветьте на вопросы ниже, чтобы проверить, насколько хорошо вы понимаете темы, затронутые в предыдущем разделе. Этот короткий тест делает , а не учитываются при подсчете вашей оценки в классе, и вы можете пересдавать неограниченное количество раз.
Используйте этот тест, чтобы проверить свое понимание и решить, следует ли (1) изучить предыдущий раздел дальше или (2) перейти к следующему разделу.
Руководство по изучению гомеостаза | Inspirit
Инструменты для творчества скоро появятся, чтобы вдохновить!
Присоединяйтесь к списку рассылки, чтобы узнать, когда мы запустимся.
Биология
Общая биология
Биология человека
Учебное пособие по гомеостазу
Джессика
Гомеостаз относится к устойчивому состоянию физических и химических условий, поддерживаемых живыми организмами, необходимых для их выживания.
Введение:
В 1865 году французский физиолог Клод Бернар впервые ввел понятие гомеостаза в организме. Однако позже он был популяризирован Уолтером Брэдфордом Кэнноном в 1926 году.
Гомеостаз происходит от двух древнегреческих слов, произносимых как homoios и histemi, что означает «сочетание», соответственно переводится как «подобный» и «стоять на месте».
Что такое гомеостаз?
Гомеостаз – это тенденция или способность клетки или всего организма поддерживать и стремиться к состоянию равновесия независимо от внешней среды.
Биологию гомеостаза можно объяснить как умение живого организма оставаться в пределах досягаемости при колебаниях окружающей среды.
Помогает организму стабилизироваться и поддерживать себя на Земле.
Процесс гомеостаза
Гомеостатические системы организма функционируют особым образом, и биологические системы вашего тела постоянно отклоняются от равновесия. Например, если вы тренируетесь, ваши мышцы увеличивают выработку тепла вашим телом. В свою очередь, это повысит температуру вашего тела.
Источник
Точно так же повышается уровень глюкозы в крови, когда вы пьете фруктовый сок.
- Гомеостаз — это способность вашего организма обнаруживать эти изменения и противостоять им.
- Гомеостаз в организме поддерживается за счет отрицательной обратной связи.
- Петли действуют против раздражителя, что нарушает устойчивость тела.
- Например, когда у вас высокая температура тела, петля отрицательной обратной связи будет пытаться довести ее до оптимальной температуры, 37 градусов по Цельсию.
Компоненты регуляции гомеостаза
Источник
Есть три компонента, которые помогают регулировать гомеостаз в нашем организме. Они следующие:
1. Рецепторы
Они получают информацию о состоянии вашего тела. Рецепторы воспринимают и контролируют изменения как внешней, так и внутренней среды. Они присутствуют как чувствительные нервные окончания, которые получают стимул. После этого они посылают соответствующий ответ, вырабатывая нервные импульсы в зависимости от степени, отсутствия/наличия и типа стимуляции.
2. Центры управления
Эту зону также называют интеграционным центром. Центры управления получают и обрабатывают информацию, поступающую от рецепторов. Ренин-ангиотензиновая система и дыхательный центр являются некоторыми примерами центров управления.
3. Эффекторы
Они реагируют на информацию, обрабатываемую и передаваемую центрами управления. Это поможет телу либо противостоять изменению, либо усилить его для поддержания равновесия. Железа или мышца являются примерами эффекторов на уровне органа или ткани. Принимая во внимание, что на клеточном уровне ядерные рецепторы являются примером эффекторов.
Что такое нарушение гомеостаза?
- Когда ваше тело не в состоянии поддерживать гомеостаз, это мешает ему функционировать должным образом.
- Он может даже не поддерживать саму жизнь.
- Постоянный дисбаланс в гомеостазе может привести к заболеваниям и болезням.
- В тяжелых случаях может даже привести к инвалидности или смерти.
Некоторые из общих факторов, которые могут повлиять на гомеостаз, следующие:
- Побочные эффекты медицинских процедур и лекарств
- Психологическое здоровье
- Токсины и яды
- Питание и диета
- Физическое состояние
- Генетика
Заключение:
- Гомеостаз – устойчивое внутреннее состояние, при котором физические и химические условия поддерживаются живыми организмами.
- В игру вступают различные оптимальные факторы, такие как температура тела, баланс жидкости.
- Рецепторы, центры управления и эффекторы являются тремя основными компонентами гомеостаза.
Часто задаваемые вопросы:
1. Как лучше всего описать гомеостаз?
Гомеостаз — это саморегулирующийся процесс, который все живые организмы используют для поддержания внутренней и внешней стабильности, приспосабливаясь к внутренней или внешней среде, чтобы выжить.
2. Какая часть тела контролирует гомеостаз?
Центральная нервная система и эндокринная система организма являются двумя основными системами контроля, которые помогают регулировать гомеостаз.
3. Какие пять примеров гомеостаза?
Ниже приведены пять примеров гомеостаза в организме:
- Гомеостаз температуры тела
- Гомеостаз концентрации кислорода в крови
- Гомеостаз глюкозы в крови
- Гомеостаз объема воды в организме
- Гомеостаз артериального давления
Мы надеемся, что вам понравился этот урок, и вы узнали что-то интересное о Гомеостазе ! Присоединяйтесь к нашему сообществу Discord, чтобы получить ответы на любые вопросы и пообщаться с другими студентами, такими же, как и вы! Не забудьте загрузить наше приложение, чтобы испытать наши веселые классы виртуальной реальности — мы обещаем, это делает учебу намного веселее! 😎
Источники:
- Гомеостаз.